Uranium Prospectivity Identified at Ross Project

Highlights

- A review of recent and historical work across the Ross Project has identified potential U-Th-REE bearing pegmatites.
- Historical sampling completed in 2007 on FIN's Ross Project identified highly anomalous <u>Uranium in soil sampling up to 1,486 ppm U₃08</u> associated with low Thorium.
- Analysis previously completed by Dr Neil Pendock identified a significant number of potential Uranium occurrences across the Ross Project. Gas estimated from Sentinel-2 VNIR showed anomalous helium which may originate from radioactive decay of Uranium.
- FIN are planning to complete a high resolution airborne magnetic and radiometric surveys across the Ross and Cancet West Projects during the Spring/Summer 2024 field season.

Fin Resources Director, Mr Jason Bontempo stated *"FIN continues to aggressively advance towards its maiden drill programme at White Bear. Which will be an extremely exciting diamond drilling programme for FIN, with the fully funded initial phase of approximately 1,500m representing the first drilling ever completed across the Cancet West Project.*

Additionally, we have identified uranium potential across our Ross Project and will assess the possibility of uranium mineralisation at Cancet West and Gaspe. This is a very exciting time for FIN."

ROSS URANIUM PROSPECTIVITY

Historical sampling completed in 2007 by Landmark Minerals Inc. across their Rupert River Uranium Project (the western portion of which covers FIN's Ross Project) reported a soil sample of up to 1,260 ppm U (1,486 ppm U_3O_8).

This historical data combined with anomalous pathfinder elements including Total Rare Earth Oxides (TREO) and Th levels in pegmatite samples 138203, 138204 and 138227 previously reported by FIN¹, is potentially indicative of U-Th-REE bearing pegmatites that can show geochemical overlap with LCT (Lithium- Caesium-Tantalum) pegmatites. The TREO and Th results, and historical Uranium results are shown in **Figure 1**.

ASX Release

5 March 2024

ASX: FIN

Corporate Directory

Director Jason Bontempo

Technical Director Brian Talbot

Director and Company Secretary Aaron Bertolatti

Registered Office 35 Richardson Street West Perth WA 6005

info@finresources.co <u>m.au</u> www.finresources.co <u>m.au</u>

ABN: 25 009 121 644

ASX.FIN (S) @finresourcesitd (X) mpany/fin-resources-Itd/ in

¹ FIN ASX Announcement – Multiple High Grade Li2O Channel Samples at White Bear Confirms Extensive Drill Target 4/12/2023

Historical sample SL-294 which reported 1,486 ppm U_3O_8 (repeat of 566ppm U_3O_8) is associated with low Th 0.7ppm and >10,000 Max CPS (Counts per Second) from the ground based radiometric survey (see **Figures 2 & 3**), was logged purely as soil by Consul-Teck Exploration Inc. who carried out the 2007 geological and geochemical exploration programme^{2 3}. Of the 39 samples (Table 2) taken historically across Ross targeting Pegmatite hosted Uranium the mean value of the sample population is 23.5ppm U_3O_8 (see Figure 2), standard deviation is 553ppm U_3O_8 , highlighting how significant the anomalous results are.

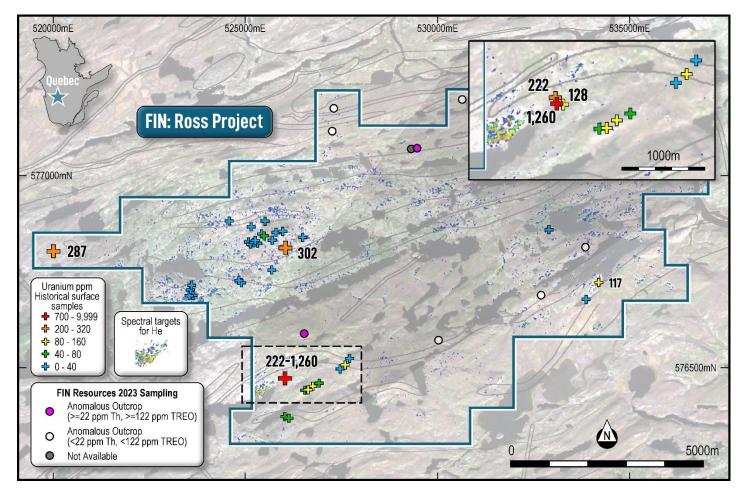


Figure 1 | Total rare earth elements reported in rock grab samples and historical uranium results from the Ross Lithium Project

Landmark Minerals Inc. held 100% interest in 76 mineral claims in four separate blocks located in the Rupert River area of west-central Quebec. The claims were acquired in 2006 to cover ground favourable for the location of pegmatite-hosted uranium mineralization. The southern portion of their eastern block, which was named Adrian covered the location now covered by FIN's Ross Project which is the target of this release.

² Landmark Minerals Inc. 2007 - Report on the Field Work and Results of 2006-2007 Exploration Work on the Rupert River Uranium Project – GM64248 SIGEOM Examine Report

³ FIN ASX Announcement – Multiple Lithium & REE Targets Identified and Additional Ground Staked at Ross Lithium Project 29/05/2023

In 2006, Landmark contracted ProspectAir Inc. to complete a 4,920 line kilometre magnetic-radiometric survey by helicopter over the property area. Results of the survey identified multiple magnetic and radiometric anomalies deemed worthy of ground follow up, including several that are located within FIN's Ross Project area.

A further review of analysis previously completed for FIN by Dr Neil Pendock targeting LCT pegmatites¹, identified a significant number of potential Uranium occurrences across the Ross Project. Gas estimated from Sentinel-2 VNIR can penetrate vegetation and shallow soil cover and a number of the rock chip sample locations used to train the multivariant analysis appear anomalous in hydrogen and helium. The anomalous helium is likely to originate from radioactive decay of U, therefore the areas of anomalous He are planned to be followed up.

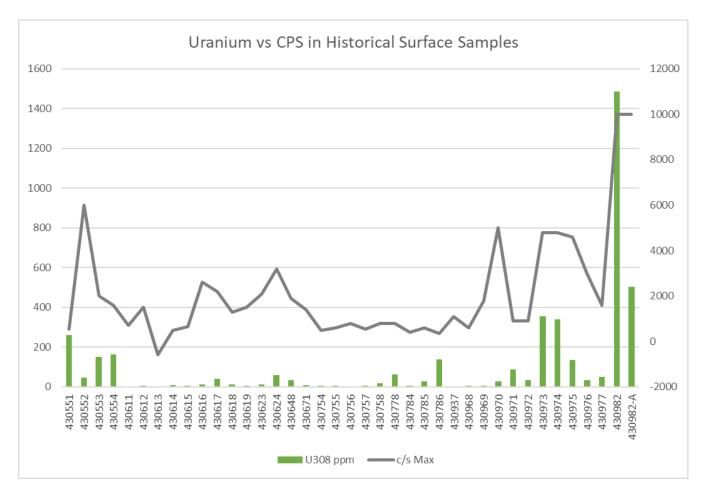



Figure 2 | Historical uranium oxide and thorium results reported across the Ross Project

Figure 3| Historical uranium oxide and CPS results reported across the Ross Project

FIN are planning to complete high resolution airborne magnetic and radiometric surveys across both Ross and Cancet West during the Spring/Summer 2024 field season.

Authorised for release by the Board of Fin Resources Limited

For further information contact:

Jason Bontempo - info@finresources.com.au

Cautionary Note

The interpreted presence of pegmatite, pegmatite granite or visual spodumene does not equate to lithium mineralisation. The Company is encouraged by the geology identified by the initial field and desktop work programmes within Cancet West, but no quantitative or qualitative assessment of economic mineralisation is possible at this stage. The Company plans to undertake further field work to test for potential lithium mineralisation and further laboratory analysis of drill samples, rock chip samples and channel samples is required to determine if the spodumene, mapped pegmatites and pegmatite granites have the potential to host economic mineralisation.

Competent Persons Statement

The information in this Report is based on information reviewed by Mr Kell Nielsen who is a Consultant to FIN Resources Ltd. and is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Nielsen has sufficient experience which is relevant to this style of mineralisation and type of deposit under consideration and to overseeing activities which he is undertaking to qualify as a Competent Person as defined in the 2004 and 2012 Editions of the "Australasian Code for Reporting of Exploration Results, Minerals Resources and Ore Reserves'.

Mr Nielsen consents to the inclusion in the report of the matters based on his review of information in the form and context in which it appears.

Forward looking statements

This release may include forward-looking statements. These forward-looking statements are not historical facts but rather are based on FIN's current expectations, estimates and assumptions about the industry in which FIN operates, and beliefs and assumptions regarding FIN's future performance. Words such as "anticipates", "expects", "intends", "plans", "believes", "seeks", "estimates", "potential" and similar expressions are intended to identify forward-looking statements. Forward-looking statements are only predictions and not guaranteed, and they are subject to known and unknown risks, uncertainties and assumptions, some of which are outside the control of FIN. Actual values, results or events may be materially different to those expressed or implied in this release. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward-looking statements. Any forward-looking statements in this release speak only at the date of issue of this release. Subject to any continuing obligations under applicable law and the ASX Listing Rules, FIN does not undertake any obligation to update or revise any information or any of the forward-looking statements in this release or any changes in events, conditions or circumstances on which any such forward looking statement is based. Actual values, results, interpretations or events may be materially different to those expressed or implied in this announcement.

Historical Reporting of Results

COMMENTS REGARDING THE REPORTING OF OTHER ENTITIES EXPLORATION RESULTS

- The exploration results reported herein have been sourced from public reports as listed in the References.
- The information in this announcement is an accurate representation of the available data for project that has been sourced to date.
- The historical exploration results were not reported in accordance with the JORC Code

Appendix 1:

Historical Rock Chip Samples and Mapped Pegmatite Details

SampleCollectionA Eurocopter AS350BA helicopter was contracted from Heli-Excel to provideand Medium:transportation to the work sites from the base camp. Radiometricprospecting was conducted using GR-110 scintillometers. The location of
samples and scintillometer

readings were controlled with the use of handheld Garmin 60CS GPS units. Samples were selected during prospecting based on high radiometric readings on scintillometers. Samples were always taken when readings were above 900 counts/second, but often outcrops of interest were sampled regardless of counts.

Pegmatites were sampled selectively in this way, as were outcrops and boulders showing distinct "yellow product" (uranium oxides) and sometimes disseminated fuchsite. Sampled material was chosen to include as little cortex as possible to avoid depletions and enrichments due to weathering.

Sample Spacing:Samples were sampled on an adhoc basis, not on an orientated grid so
sample spacing appears to have been fluid throughout the programme.

- Number of Samples:39 samples with assay values within the Ross Project held by FIN Resources.QAQC:The exploration results reported herein have been sourced from a publicly
available SiGEOM Report GM64248. Details on QAQC, Sample security and
chain of custody are unknown.
- Analysis:Samples were sent to the ALS Chemex sample preparation facility in Val
d'Or, Quebec, with pulps then sent to ALS Chemex in Vancouver, BC for
analyses. All samples were crushed and pulverized to <75 um by the lab.
Two main analytical procedures were used.

ME-MS61 four acid digestion and 48 element mass) spectrometry was the primary analysis for determining U and Th, the primary elements of interest in this exploration

program.

Sample Preparation:Received Sample WeightSample login - Rcd w/o BarCodeScreen to -180um and save bothSample Analysis:48 element four acid ICP-MS

Table 1:Summary of Sample Analysis by Element

			0			0													
Element (Units)	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Ce ppm	Co ppm	Cr ppm	Cs ppm	Cu ppm	Fe %	Ga ppm	Ge ppm	Hf ppm	In ppm	К%
Lower Detection Limit	0.01	0.01	0.2	10	0.08	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01	0.05	0.05	0.1	0.008	0.01
Count	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39	39
Min	0.01	0.05	0.005	20	0.005	0.005	0.12	0.005	0.42	0.2	3	0.07	0.8	0.028 472	0.38	0.005	0.1	0.001	0.04
Max	0.3	9.73	3.9	1840	2.68	1.54	7.13	0.63	500	34.1	160	5.99	119. 5	6.63	54.7	3.5	66.5	0.089	6.33
Mean	0.05	5.59	0.03	325. 60	0.87	0.05	0.86	0.02	82.80	1.58	13.2 0	1.46	3.06	0.80	15.26	0.18	5.12	0.01	2.36
S.D.	0.05	2.15	0.71	388. 42	0.65	0.35	1.31	0.12	176.7 4	6.04	30.5 8	1.20	20.1 9	1.44	9.26	0.58	13.3 0	0.02	1.81
P25	0.03	6.61 5	0.005	225	0.665	0.02	0.53	0.005	31.05	0.65	8	1.07	1.3	0.425	14.17 5	0.1	3.05	0.005	2.21 5
P50	0.04	7.07	0.005	350	1.03	0.05	0.78	0.02	104	1.4	12	1.69	2.1	0.71	16.2 19.87	0.15	6.4	0.008	3.74
P75	0.07	7.77 9.47	0.35	720 1279	1.615	0.085	1.43	0.06	248	3.6	15 104.	2.325	5.05 56.8	1.68 5.575	5	0.295	10.3 46.2	0.017	4.98 5 6.00
P97.5 Contrast	5	35	1.525	.5	2.547	5	4.09	0.383	500	18.33	9	5.325	95	5	36.27	1.315	65	0.050	7
(P97.5/P50) Contrast	3.5	1.3	305.0	3.7	2.5	30.6	5.2	19.2	4.8	13.1	8.7	3.2	27.1	7.9	2.2	8.8	7.2	6.3	1.6
(Max/P97.5)	2.2	1.0	2.6	1.4	1.1	1.0	1.7	1.6	1.0	1.9	1.5	1.1	2.1	1.2	1.5	2.7	1.4	1.8	1.1
	La	Li		Mg	Mn	Мо	Na	Nb	Ni	Р	Pb	Rb	Re		Sb	Sc	Se	Sn	Sr
Element (Units) Lower	ppm	ppm	Li2O	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm 0.00	S %	ppm	ppm	ppm	ppm	ppm
Detection Limit	0.5	0.2	1.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5	0.1	2	0.01	0.05	0.1	1	0.2	0.2
Count	39	39 0.00	39 0.010	39	39	39	39	39	39	39	39	39	39 0.00	39	39	39	39 0.00	39	39
Min	0.005	5	765 243.2	0.02	32 2280	0.18	0.01	0.1	0.8	50 1000	4.5	0.9	1 0.05	0.005	0.005	0.1	5	0.005	18.9
Max	4080	113	89	2.18	0 143.3	80.6	4.44	35.8	78.3	0 283.7	436 52.4	243	2	0.24	0.33	19.9	9	2.2	555 185.
Mean	42.43 661.1	9.89 19.0	21.30	0.16	3 4702.	2.17	1.80	3.11	3.80	7 2157.	2 86.7	89.75	0.00	0.01	0.01	2.24	0.61	0.35	52 111.
S.D.	7	2	40.95 20.23	0.41	11	16.57	0.94	8.38	16.11	35	7	67.02	0.01	0.05	0.08	4.33	1.60	0.53	34 145.
P25	13.9	9.4	82 28.85	0.06	55.5	0.67	1.88	1.2	1.7	120	38.6	83.85	1 0.00	0.005	0.005	1.1	1	0.3	5
P50	48.1 120.2	13.4 17.0	02 36.70	0.14	90	1.02	2.1	3.6	2.3	200	53.2 77.1	138	1 0.00	0.01	0.005	2.2	2	0.5	223
P75	5 1382	5 62.8 4	865 135.2 945	0.35 1.09 7	217 2014 0	6.925	5 4.42	6.9 35.61	6.65 51.98 5	695 1000	5 374. 25	177 240.1	1 0.01 02	0.01	0.005 0.320 5	4.5 17.14 5	2	0.8	272 417. 25
P97.5 Contrast (P97.5/P50)	28.7	4.7	4.7	7.8	223.8	61.6 60.4	2.1	9.9	22.6	0	7.0	5	10.2	0.183	64.1	7.8	5.2 2.6	3.6	1.9
Contrast (Max/P97.5)	3.0	1.8	1.8	2.0	1.1	1.3	1.0	1.0	1.5	1.0	1.2	1.0	5.1	1.3	1.0	1.2	1.7	1.2	1.3
														-					
Element (Units)	Ta ppm	Te ppm	Th ppm	Ti %	TI ppm	U ppm	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm								
Lower Detection Limit	0.05	0.05	0.2	0.00 5	0.02	0.1	1	0.1	0.1	2	0.5								
Count	39	39	39	39	39	39	39	39	39	39	39								
Min	0.005	0.00 5	0.005	0.00 5	0.005	1	0.00 5	0.005	0.2	3	2.2								
Max	1.79	0.06	3230	0.51 5	1.96	1260	87	136	366	103	500								
Mean	0.18	0.01	45.24	0.04	0.52	19.99	3.15	0.21	11.83	15.91	118. 71								
S.D.	0.38	0.01	530.0 9	0.12	0.43	212.2 3	17.8 5	24.77	62.18	23.78	160. 26								
P25	0.085	0.00 5 0.00	24.55	0.01 75 0.03	0.4	4.3	2	0.1	5.2	7	64.8								
P50	0.2	0.00 5 0.00	52.4 114.7	0.03 4 0.12	0.78	22.4	6	0.2	11	16	164								
P75	0.37	5	5	0.12 2 0.41	1.02	63.7	10.5 68.9	0.3 84.60	23.45 148.9	37	264								
P97.5 Contrast	5	0.06	1216	0.41	1.789	469.6	5	5	25	87.8	500								
(P97.5/P50) Contrast	8.5	12.0	23.2	12.1	2.3	21.0	11.5	423.0	13.5	5.5	3.0								
(Max/P97.5)	1.1	1.0	2.7	1.3	1.1	2.7	1.3	1.6	2.5	1.2	1.0	J							

Table 2:Sample Analysis

Sample	Easting	Northing	MPc/s	c/s Max	Cs ppm	Li ppm	Li2O*	Mg %	Ta ppm	Th ppm	U ppm	U3O8*
430551	526008	5764741	550	550	1.94	113.00	243.29	0.97	0.37	37.70	222.00	261.78
430552	526564	5764431	700	6000	2.13	14.80	31.86	0.32	0.35	124.50	40.10	47.29
430553	526644	5764432	700	2000	2.88	21.60	46.50	0.31	0.42	148.50	127.50	150.35
430554	526784	5764520	500	1600	5.29	13.70	29.50	0.48	0.64	49.10	138.00	162.73
430611	523626	5766900		700	1.69	21.20	45.64	0.38	0.39	52.40	1.80	2.12
430612	523612	5767164		1500	2.36	14.20	30.57	0.23	0.24	197.00	4.30	5.07
430613	524593	5768843		-600	2.57	17.10	36.82	0.32	0.51	88.50	1.90	2.24
430614	524853	5767276		500	1.36	18.20	39.18	0.06	0.20	20.70	8.30	9.79
430615	525711	5767559		650	1.75	13.80	29.71	0.03	0.08	10.80	3.50	4.13
430616	525294	5768277		2600	3.42	60.20	129.61	0.72	0.65	392.00	10.20	12.03
430617	525997	5768586		2200	0.88	4.70	10.12	0.18	0.16	105.00	33.30	39.27
430618	526522	5768418		1300	0.54	3.20	6.89	0.07	0.07	41.10	10.90	12.85
430619	525527	5768845		1500	5.99	34.30	73.85	1.04	1.70	87.30	3.50	4.13
430623	527750	5765252	2S0	2100	2.81	9.20	19.81	0.14	0.35	63.00	10.10	11.91
430624	526042	5763718	250	3200	1.01	17.30	37.25	0.66	0.34	23.80	49.50	58.37
430648	532967	5768617	200	1900	3.02	13.40	28.85	0.09	0.15	47.40	28.00	33.02
430671	500158	5754014			0.50	3.70	7.97	0.05	0.06	25.30	6.30	7.43
430754	523544	5766881	500	1400	2.29	13.60	29.28	0.26	0.29	63.20	5.40	6.37
430755	525262	5768343	300	500	1.63	2.60	5.60	0.04	0.07	4.10	3.60	4.25
430756	525097	5768292	350	600	1.15	12.60	27.13	0.24	0.14	56.90	1.00	1.18
430757	525221	5768292	300	800	2.04	30.40	65.45	0.42	0.38	143.50	4.30	5.07
430758	525814	5768541	400	550	0.89	15.90	34.23	0.12	0.12	33.90	14.90	17.57
430778	526944	5764617	300	800	3.17	5.70	12.27	0.07	0.12	10.40	53.30	62.85
430784	525145	5768242	400	800	1.11	10.00	21.53	0.18	0.15	138.50	4.20	4.95
430785	533955	5766786	300	400	1.73	9.60	20.67	0.04	0.09	19.40	23.70	27.95
430786	534279	5767243	400	600	2.57	16.60	35.74	0.04	0.14	72.10	117.00	137.97
430823	523579	5767039		350	0.76	11.40	24.54	0.05	0.05	29.20	1.60	1.89
430968	524871	5767250		600	0.68	16.90	36.39	0.02	0.07	9.60	4.30	5.07
430969	525164	5768698	400	1770	1.91	3.20	6.89	0.23	0.21	20.60	4.20	4.95
430970	525449	5768511	700	5000	1.44	17.00	36.60	0.83	0.90	1110.00	22.40	26.41
430971	525473	5768467	300	900	1.40	37.70	81.17	2.18	1.79	3230.00	74.10	87.38
430972	525714	5768346	200	900	1.17	12.20	26.27	0.08	0.07	51.20	29.60	34.90
430973	526065	5768138	1000	4800	1.85	13.20	28.42	0.62	0.37	422.00	302.00	356.12
430974	519995	5768044	700	4800	1.03	10.20	21.96	0.03	0.21	510.00	287.00	338.43
430975	527631	5765071	800	4600	1.97	13.30	28.63	0.10	0.22	42.80	113.00	133.25
430976	527500	5764981	800	3000	1.58	8.70	18.73	0.11	0.18	55.80	29.10	34.31
430977	526150	5763681	700	1600	1.16	11.40	24.54	0.06	0.06	71.80	41.50	48.94
430982	526009	5764730		10000	0.31	0.50	1.08	0.09	0.01	0.70	1260.00	1485.79
430982-A	526009	5764730		10000	0.07	0.01	0.01	0.05	0.01	0.01	428.00	504.70

Note all Locations are Reported in NAD83 / UTM zone 18N

Appendix 2:

Summary of Historical Exploration Across Ross Claims

Ross Project	t Historic Repo	orts		
SIGEOM	Туре	Title	Year	Company
REPORTI				
D				
GM64036	Geochemi	RAPPORT D'EVALUATION TECHNIQUE SUR LE POTENTIEL EN	2008	Big Red Diamond Corporation
	stry	MINERALISATION URANIFERE DE LA PROPRIETE STRATEGIS		
GM64248	Geochemi	REPORT ON THE FIELD WORK AND RESULTS OF 2006-2007	2008	Landmark Minerals Inc.
	stry	EXPLORATION WORK ON THE RUPERT RIVER URANIUM PROJECT		
GM34175	Geochemi	PROJET VERIFICATION D'ANOMALIES GEOCHIMIQUES, PERMIS	1978	SOCIETE DE
	stry	SDBJ-3		DEVELOPPEMENT DE LA
				BAIE JAMES
GM54463	Geochemi	RAPPORT DES TRAVAUX, PROPRIETE LAC PACIFIQUE	1996	MINES D'OR VIRGINIA INC
	stry			
GM54627	Geology	REPORT ON 1995 DIAMOND DRILLING, LAC HUDSON PROJECT	1996	Eastmain Resources Inc.
GM32951	Geology	EVALUATION PORTANT SUR L'ACCESSIBILITE ET LE	1969	Energie et Ressources
		DEVELOPPEMENT DE LA REGION DU NORD-OUEST QUEBECOIS		naturelles Quebec
GM64249	Geophysic	TECHNICAL REPORT ON HELIBORNE MAGNETIC AND RADIOMETRIC	2008	Landmark Minerals Inc.
	S	SURVEYS, RUPERT PROJECT		
GM49771	Geophysic	TRAITEMENT ET ANALYSE DE DONNEES LANDSAT TM ET	1990	Michel Rheault-Consultant
	S	GEOPHYSIQUES, REGION DE LA BAIE JAMES		
DPV720	Geology	Rapport préliminaire, région de la gorge Prosper, territoire de la Baie James	1980	A. Franconi

Appendix 3:

JORC Code, 2012 Edition (Table 1) – Ross Hyperspectral Survey and Geochem Data

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Geophysical/Hyperspectral Survey The Hyperspectral programme use Sentinel-2 satellite visible/near- infrared (VNIR) and shortwave infrared (SWIR) imagery for interpretation across the Ross Project. The results identified a number of Lithium exploration targets within the Region of Interest [ROI] (given to Dr Pendock by FIN) that lies 25km east of the Auclair Lithium Project of Cygnus Metals in the James Bay Lithium province of Quebec. A spectral unmixing of a September 2022 Sentinel-2 scene produced two minerals, interpreted as hectorite and spodumene, which are spatially correlated with nearly 109 rock chip samples containing Li from the Canadian government geochemistry database. The targets were generated by training a multivariate statistical classifier on the location of the rock chip samples. The classifier is a digital fingerprint of the Li response in the ROI. Vegetation cover and glacial till is an issue in the ROI as it may obscure spectral signals from buried deposits. Spectral unmixing may be used to separate vegetation spectra from other signatures if vegetation cover is < 100%. Gas estimated from Sentinel-2 VNIR can penetrate vegetation and shallow soil cover and the rock chip sample locations are reported as being anomalous in hydrogen and methane.

Rock Chip Samples

Criteria	JORC Code explanation	Commentary
		Historical soil geochemistry – See Appendix 2
Drilling techniques	 Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Not Applicable no drilling reported
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Not Applicable no drilling reported
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Not applicable no drilling reported
Sub-sampling	• If core, whether cut or sawn and whether	Rock Chip Samples
techniques and sample preparation	 quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the 	 Historical soil geochemistry – See Appendix 2 The reported historical rock chips sample analysis is considered appropriate and industry standard.

Criteria	JORC Code explanation	Commentary
	grain size of the material being sampled.	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 <u>Rock Chip Samples</u> Historical soil geochemistry – See Appendix 2 The reported historical rock chips sample analysis is considered appropriate and industry standard. Breakdown of the Lab, Methods and Statistics are tabled within the Release Body.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historic soil geochemistry results reviewed by Fin's Technical Adviser. The data has been extracted from a pdf version of a SiGEOM Report GM64248 (Quebec): <i>"REPORT ON THE FIELD WORK AND RESULTS OF 2006-2007 EXPLORATION WORK OT THE RUPERT RIVER URANIUM PROJECT"</i> All information reported in the body of this report and Appendix 1 was extracted from historical reports. This information was not provided in the historical reports. Where Li2O is reported a conversion factor 2.153 was applied to the Li ppm assay results. Where U3O8 is reported is reported a conversion factor 1.1792 may have been applied to the U ppm assay results Where assay results were above detection limit, the upper detection limit was used for geostatistical calculations. Where assay results were below detection limit, a value below the detection limit was used. For example for Re ppm where <0.002 was reported the values were replaced with 0.001.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 <u>Rock Chip Samples</u> Historical soil geochemistry – See Appendix 2

Criteria	JORC Code explanation	Commentary
	Specification of the grid system used.Quality and adequacy of topographic control.	NAD83 / UTM zone 18N
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The Hyperspectral program used Sentinel-2 satellite visible/near-infrared (VNIR), and shortwave infrared (SWIR) imagery for interpretation across the Ross Project. This is early-stage high level exploration data that is appropriate at this stage of the Project. No sample compositing was applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The data is early stage high level broad data to be used for initial interpretation of the Li & U prospectivity within the Ross Project. <u>Rock Chip Samples</u> Historical soil geochemistry – See Appendix 2 All information reported in the body of this report and Appendix 1 was extracted from historical reports. There is not sufficient drilling to date or information provided in the historical reports to determine this
Sample security	• The measures taken to ensure sample security.	 <u>Rock Chip Samples</u> Historical soil geochemistry – See Appendix 2 All information reported in the body of this report and Appendix 1 was extracted from historical reports. This information was not provided in the historical reports.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• No specific external audits or reviews have been undertaken on the data by the Company.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding 	• See FINS December 23 Quarterly Report for a full list of Mineral Claims related to Ross.
	 royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting 	• The mineral claims are 100% owned by Fin Resources Ltd.
	along with any known impediments to obtaining a licence to operate in the area.	• The minerals claims have no underlying royalties.
		 Cancet West and a portion of the Ross Project are covered by Hydroelectric Reserves to the Province of Quebec. Exploration is allowed under specific conditions outlined by the province. Additional conditions upon drilling approvals may be required.
		• The mineral claims are in good standing.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	• Limited previous exploration for Lithium within the region.
		• See Appendix 3 for a summary of historical exploration.
Geology	 Deposit type, geological setting and style of mineralisation. 	• The Ross Project is located in the northeast part of the Superior Province of the Canadian Shield craton. The Superior Province extends from Manitoba to Quebec, and is mainly composed of Archean-age rocks. The general metamorphism is of greenschist facies, except in the vicinity of intrusive bodies, where it reaches the amphibolite-to granulite facies.

	KXXXXXXXX	
Criteria	JORC Code explanation	Commentary
		 The Project's claims are centred on 30 km of prospective greenstone strike length of the Natel Formation within the La Grande Sub province of the Archean Superior Province in Quebec Canada. The Natel Formation consists of massive or pillowed flows of amphibolitized basalt, andesite, komatiite and rhyolite, as well as volcaniclastic units (block and lapilli tuff, lapilli tuff and tuff).
		 The Le Grande Sub Province is host to a number of major lithium projects, including the Whabouchi Lithium Mine which along strike to the south west of the Ross Project Project.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Not Applicable, no drilling being reported.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal 	 Not Applicable, no drilling being reported.

ZZZZZZZ		
Criteria	JORC Code explanation	Commentary
	equivalent values should be clearly stated.	
Relationship between mineralisation widths	 These relationships are particularly important in the reporting of Exploration Results. 	• Not Applicable, no drilling being reported.
and intercept lengths	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this 	
Diagrams	 effect (eg 'down hole length, true width not known'). Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• Diagrams are included in the body of the document.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• All results reported are early stage exploration results in nature. No representative significance were applied to the results.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• Assessment of other substantive exploration data is not yet complete however considered immaterial at this stage.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Follow up work programmes will be subject to interpretation of recent and historic results which is ongoing.