

FIN to Acquire High-Grade Cabin Lake Gold Project in Canada

FIN Resources Limited (ASX:FIN) ("FIN" or "the Company") is pleased to announce it has executed a binding Sale and Purchase Agreement to acquire a 100% interest in the Cabin Lake Gold Project ("Cabin Lake" or "the Project") in Canada's Northwest Territories; a Tier-1 jurisdiction with a proven endowment of over 14 million ounces of historical gold production.

The Cabin Lake Project delivers FIN a fully permitted, drill-ready gold asset with immediate near-surface exploration potential and strong local partnerships.

Highlights

- High-grade near-surface intercepts define broad zones of mineralisation highlighting priority open-pit exploration targets, particularly the Arrow Zone:
 - 31.9m @ 13.66 g/t Au from 17.5m (436 g*m Au) CL-20-08
 - 13.9 m @ 13.21 g/t Au from 27.92 m (184 g*m Au) 86-28
 - 19.9 m @ 8.02 g/t Au from 24.6m (159 g*m Au) CL-20-01
 - 8.0 m @ 15.7 g/t Au from 22.16 m (126 g*m Au) 86-12
 - 14.7 m @ 8.31 g/t Au from 34.87 m (122 g*m Au) 86-10
 - 13.7m @ 7.0 g/t Au from 41.2m (95 g*m Au) CL-20-03
- Proven host stratigraphy: Mineralisation hosted within the Bugow Iron Formation of the Archean Slave Craton - a similar gold-bearing stratigraphy to the 3.3 Moz Lupin Gold Mine (>10 g/t Au).
- Extensive exploration potential: Eight high-priority, fully permitted drill targets along 15km of mapped outcropping BIF.
- Tier 1 jurisdiction and infrastructure: Located ~60km SE from the NICO mine development and 105km NW of Yellowknife.
- Strong First Nations engagement: Existing access agreement in place with the Tłycho Government, who are engaged to undertake on-ground earthworks.

FIN Resources Director Jason Bontempo said: "Cabin Lake offers FIN an exciting and rare opportunity to acquire a fully permitted, high-grade gold project with immediate drill targets, historical success, and exceptional upside. Its location in a world-class gold province, proximity to infrastructure, and geological analogy to the 3.3 Moz Lupin Mine make it incredibly compelling. We're excited to move quickly into exploration and begin unlocking its value."

Cabin Lake Gold Project – Overview and Technical Summary

The Cabin Lake Gold Project is located in the Northwest Territories of Canada (Figure 1), within the Archean Slave Craton, one of North America's most prolific greenstone belts. The region has produced more than 14 million ounces of high-grade gold and hosts a further 10 million ounces being explored or developed.

The Project comprises the Bugow Iron Formation, a highly prospective and well-characterised Archean banded iron formation (BIF) unit that is similar to the sequence that hosts the Lupin Gold Mine (3.3 Moz Au). (Figure 1).

29 October 2025

ASX: FIN

Corporate Directory

Director Jason Bontempo

Director Bruce McFadzean

Company Secretary Aaron Bertolatti

Registered Office 35 Richardson Stree West Perth WA 6005

info@finresources.com.au www.finresources.com.au

ABN: 25 009 121 644

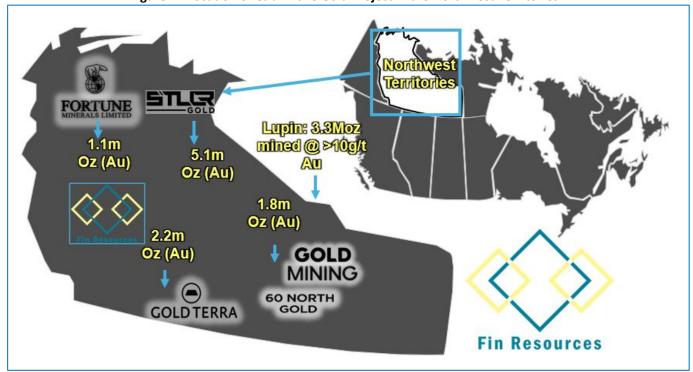


Figure 1 - Location of Cabin Lake Gold Project in the Northwest Territories.

Strategic Location and Geological Setting

Cabin Lake is located ~105 km northwest of Yellowknife, in a region with a long mining history, established infrastructure, and stable regulatory framework. The Project comprises one granted mineral lease and is fully permitted for exploration, supported by a long-standing First Nations access agreement that facilitates ongoing exploration and future development activities.

Mineralisation at Cabin Lake is hosted within sulphide-rich, steeply dipping, lenses of amphibolite facies banded iron formation (BIF) and associated near-vertical shear zones. The BIF units are tightly folded and locally sheared, forming favourable structural and lithological traps for gold deposition. This style of mineralisation is typical of other banded iron formation hosted gold systems in the Slave Craton (e.g. Lupin) and is associated with pyrite, pyrrhotite and arsenopyrite within iron-rich metasedimentary rocks. These mineralised lenses are readily identifiable through induced polarisation (IP) and magnetic geophysical surveys, which provide reliable vectors for ongoing drill targeting.

Drilling to date has only tested the upper 100m of the system, primarily at the Arrow, Andrew, and Beaver prospects, with some deeper intercepts at the Arrow prospect to 130m. Despite this limited depth penetration, results have returned exceptionally high-grade intercepts, indicating the continuity and strength of the mineralised system. Mineralisation is not constrained to the near surface and based on geological and geophysical evidence, is interpreted to extend to greater depths and along strike within the folded BIF units. These structural and geophysical relationships are further illustrated in **Figure 2** (drill prospects over IP anomalies) and in the **Annexure A geophysical maps**, where coincident chargeability and magnetic highs define the folded BIF horizons hosting mineralisation.

Historical (pre-1991) and more recent drilling (2020–2022) has continued to confirm strong mineralisation to vertical depths of approximately 100m, which is significantly shallower than comparable BIF-hosted gold deposits in the Slave Craton, where mineralisation is known to persist to depths exceeding 1,000m.

Notable historical intercepts include:

Arrow Zone	Beaver Zone			
 31.9 m @ 13.7 g/t Au from 17.5 m (CL-20-08) includes 1.4m @ 26.5 g/t Au from 20.6 m 13.9 m @ 13.2 g/t Au from 27.9 m (86-28) 	 4.6 m @ 5.0 g/t Au from 42.6 m (CL-21-10) 5.7 m @ 3.4 g/t Au from 43.5 m (87-49) 2.0 m @ 5.0 g/t Au from 88.0 m (88-61) 			

- including 1.2 m @ 30.9 g/t Au from 35.4 m
- **19.9 m @ 8.0 g/t Au from 24.6 m** (CL-20-01) including 0.35 m @ 27.3 g/t Au from 42.7 m
- **8.0 m @ 15.7 g/t Au from 22.2 m** (86-12) including 0.9 m @ 39.8 g/t Au from 26.5 m
- 14.7 m @ 8.3 g/t Au from 34.9 m (86-10)
- 13.6 m @ 7.0 g/t Au from 41.2 m (CL-20-03)
- 7.6 m @ 11.6 g/t Au from 67. 7 m (86-13)

- 3.0 m @ 3.0 g/t Au from 88.8 m (88-64)
- **2.1 m @ 3.8 g/t Au from 12.9 m** (CL-21-39)

Andrew Zone

- **3.8m @ 3.7 g/t Au from 75.4 m** (87-35)
- **3.7 m @ 3.2 g/t Au from 88.7 m** (87-36)
- **3.1 m @ 2.8 g/t Au from 45.8 m** (86-34)
- 1.6 m @ 4.6 g/t Au from 18.2 m (CL-21-27)
- 4.7 m @ 6.1 g/t Au from 92.2 m (87-56)
- 4.0 m @ 3.5 g/t Au from 90.1 m (CL-21-21)

All intervals are downhole lengths; true widths are not yet known. A comprehensive listing of significant intercepts and drill collar information is provided in Annexure A, Tables 1A and 2A.

These results confirm broad, high-grade, near-surface mineralisation within tightly folded and faulted, steeply dipping, BIF units, across multiple zones (Arrow, Beaver and Andrew zones). The style and geometry of mineralisation are consistent with other BIF-hosted gold deposits in the Slave Craton, where gold commonly occurs in association with pyrrhotite and arsenopyrite within BIF.

The mineralised system remains open at depths below 100m and along strike, indicating strong potential for extensions beyond the currently tested zones and for resource expansion through further drilling.

Project Control and Permitting

On Completion, the Project will be 100% controlled by FIN and is fully permitted for exploration. FIN has secured the rights through a structure that maintains value for both FIN and the vendor, Stockworks Gold Inc. (TSX-V: STWK), which has already invested more than C\$4 million in exploration and permitting activities.

An active exploration permit and a long-standing partnership with local First Nations provide a clear pathway for continued exploration and development. The Project is drill-ready and capable of rapid mobilisation. Proximity to established infrastructure and historical mining centres also provides potential access to third-party processing facilities, enhancing development options and capital efficiency.

Exploration Potential and Mineralisation Style

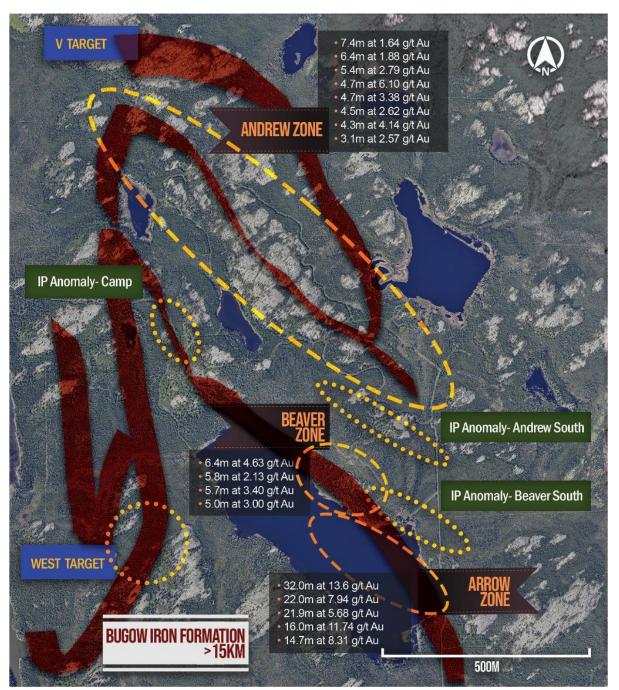
Gold at Cabin Lake occurs in sulphidised amphibolite facies banded iron formation where folding and shearing have created steeply dipping, structurally controlled ore shoots. The Arrow Zone in particular demonstrates a plunging, high-grade shoot extending over approximately 120m of strike and remains open both to the northeast and at depths below 100m.

This structural style is analogous that of the Lupin Gold Mine, providing a high degree of geological confidence and a robust exploration model. Sulphide intensity, magnetic response, and IP chargeability all correlate strongly with mineralisation, offering reliable geophysical vectors for identifying additional mineralised lenses and potential extensions.

The combination of consistent high grades, predictable structural and geophysical controls and surface exposure of mineralisation makes Cabin Lake a highly compelling, near-term exploration and early development opportunity within the prospective Slave Craton gold belt.

Phase 1 Exploration Program

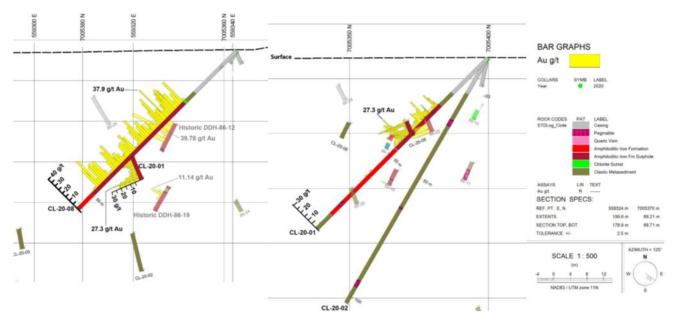
A fully permitted Phase 1 exploration program (Figure 2) has been designed to test the high-priority anomalies defined in the 2018 UAV magnetics and deep-penetration IP surveys (**Appendix A, Figures 5–7**). These maps highlight several untested responses extending beyond the current drill grid. This initial campaign will focus on validating historical drilling results and extending mineralisation at depth through a combination of confirmatory and step-out diamond drilling.



The key objectives of the Phase 1 program are to:

- Confirm and extend high-grade mineralisation within the Arrow Zone.
- Test untested IP anomalies identified during recent geophysical surveys.
- Generate sufficient geological and assay data to support a potential JORC-compliant Mineral Resource estimate.
- Establish a structural and geochemical framework to guide follow-up drilling and deeper targeting.

The program will leverage Stockworks' previous exploration data, while applying modern analytical and QA/QC techniques, including the re-assaying of selected historical drill core where appropriate, to ensure full JORC (2012) compliance and data integrity.


Figure 2 - Priority drill prospects over IP chargeability anomalies and historical drilling results.

Note: The intercepts in Figure 2 were calculated using different reporting parameters than those reported in this announcement. The Figure was provided by Stockworks Gold Inc.

Figure 3 - Drill-section view, Arrow Zone (Holes CL-20-01, -02 and -08), showing continuity of high-grade mineralisation.

Drill hole CL-20-08 was drilled oblique to historic drill holes 86-12 (15.77 g/t over 8.02 m from 22.2m) and targeted the shear zone intersected by hole CL-20-01 (19.5 m @ 8.0 g/t Au from 24.6 m) (see above). CL-20-08 intersected gold mineralized iron formation at a depth of 17.5 m. The continuous gold mineralized interval extends from 17.5 m to 49.4 m averaging 13.66 g/t Au over 31.9 m.

Arrow Prospect – Priority Drill Target

The Arrow prospect represents the most advanced and compelling target within the Cabin Lake Gold Project. Gold mineralisation is hosted within sulphidised amphibolite facies Banded Iron Formation and is structurally controlled by a prominent fold hinge that has focussed the development of highgrade ore shoots.

The shallow plunging geometry, excellent grade continuity, and open-ended mineralisation make Arrow the ideal starting point for resource definition drilling and potential early-stage development. The 3-D interpretation of this zone and its correlation with magnetic and IP anomalies are shown in Figures 3 and 4, with additional anomaly mapping presented in Annexure A.

Key Intercepts include:

CL-20-08: 31.9 m @ 13.7 g/t Au from 17.5 m 86-28: 13.9 m @ 13.21 g/t Au from 27.92 m CL-20-01: 19.8 m @ 8.0 g/t Au from 24.6 m 86-12: 8.0 m @ 15.7 g/t Au from 22.16 m 86-10: 14.7 m @ 8.3 g/t Au from 34.87 m CL-20-03: 13.7 m @ 7.0 g/t Au from 41.2 m

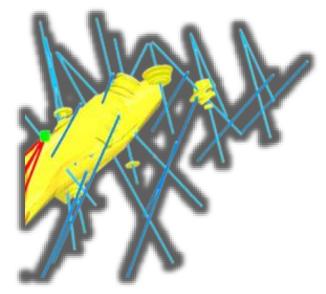


Figure 4 - Modelled Arrow Zone ore-shoot

Investment Rationale and Strategic Value

The Cabin Lake Gold Project provides FIN Resources with an exceptional entry point into a well-understood, high-grade gold system within a Tier 1 mining jurisdiction. The Project's combination of strong historical drill results, substantial untested depth potential, existing permits, and established First Nations partnerships provides a clear and efficient pathway for value creation through exploration success.

The structural and geological similarities to other major BIF-hosted gold systems in Canada, together with the presence of multiple untested magnetic and IP anomalies, highlight significant potential for additional across the broader tenement package.

The acquisition structure ensures alignment between FIN and the vendor, Stockworks Gold Inc. leveraging FIN's access to Australian capital markets to advance exploration while preserving long-term value for both parties.

Summary

- Tier 1 Location: Northwest Territories, Canada, a politically stable, well-supported mining jurisdiction with excellent infrastructure.
- Proven Geology: Hosted within the Bugow Iron Formation, a similar stratigraphic sequence as the Lupin Gold Mine: Multiple near-surface, high-grade intercepts up to 31.9 m at 13.6 g/t Au.
- Fully Permitted and Supported: Active exploration permits in place and a long-standing First Nations access agreement supporting ongoing operations.
- Strong Foundation for Growth: Significant untested potential at depths below 100m and along strike, with modern exploration techniques poised to unlock further value.

With drilling expected to commence shortly after completion of the acquisition, the Cabin Lake Gold Project positions FIN for rapid exploration progress and early delineation of a high-quality gold resource within a proven Archean greenstone belt known to contain high-grade, BIF-hosted gold deposits.

Acquisition Terms Summary

FIN will acquire a 100% interest in the Cabin Lake Gold Project, with up-front consideration comprising A\$200,000 in cash and 30,000,000 FIN shares, subject to shareholder approval and a 12-month escrow period. A A\$100,000 exclusivity fee was paid on signing, providing FIN with a 90-day exclusivity and due diligence period.

Deferred consideration of up to A\$450,000 will be satisfied through the issue of Performance Rights linked to key exploration and development milestones:

- Stage 1 (A\$150,000): Achieve a drill intercept of ≥20 metres at >2 g/t Au within two years of Completion.
- Stage 2 (A\$150,000): Define a JORC (2012)-compliant mineral resource of at least 250,000 ounces of gold at a grade of ≥2 g/t within three years of Completion.
- Stage 3 (A\$150,000): Complete a Pre-Feasibility Study demonstrating a project NPV exceeding A\$50 million, based on a gold price of US\$3,000 per ounce, within five years of Completion.

Each milestone is payable in cash or in shares based on the higher of the VWAP of shares during the 10 days prior to achievement of the relevant milestone and A\$0.005 at the Buyer's election.

Each milestone period may be extended by 12 months through payment of A\$100,000 per stage or automatically in the event of force majeure. The vendor will retain a 5% net profit royalty on future production, which becomes payable only after full recovery of exploration and development capital, ensuring ongoing alignment with project performance. FIN will also assume a 2% Net Smelter Royalty payable to Silver Range Resources Ltd as part of the transaction. FIN will be able to buy back up to 1.5% of the royalty for C\$750,000 in the event that the project contains less than 1m ounces of Au, or C\$1.5m in the event that the project contains more than 1m ounces of Au.

FIN is committed to a minimum drill program of 1,500m of drilling within two years of Completion.

Completion of the transaction is subject to customary conditions precedent, including satisfactory due diligence, shareholder approvals, and transfer of all tenements and permits.

Meccano Consulting Pty Ltd facilitated the introduction of the Cabin Lake Project to FIN. FIN has agreed to issue Meccano or its nominee/s A\$100,000 worth of FIN shares at the placement price (15,384,615 shares) for these services, subject to shareholder approval. The shares will be subject to 6 months voluntary escrow.

Peak Asset Management Pty Ltd and Max Capital Pty Ltd have acted as corporate advisors to the Company for the acquisition of Cabin Lake. Subject to shareholder approval, each party (or their nominee/s) will be issued 10 million

advisory options with a subscription price of A\$0.00001 per option and have an exercise price of A\$0.00975 per share and an expiry of 3 years from the date of issue.

The Company will also seek shareholder approval to issue up to 10 million consultant and advisory options with a subscription price of A\$0.00001 per option and have an exercise price of A\$0.00975 per share and an expiry of 3 years from the date of issue.

Capital Raising

In conjunction with the acquisition, FIN has received firm commitments for a placement to raise A\$1,500,000 through the issue of 230,769,231 shares at A\$0.0065 per share to sophisticated and professional investors. The placement will be undertaken in two tranches.

- 1. The first tranche will be for 173,700,000 shares. 104,211,156 shares will be issued under the Company's ASX Listing Rule 7.1 placement capacity, and a further 69,488,844 shares will be issued under the Company's additional 7.1A capacity; and
- 2. The second tranche, which will be subject to shareholder approval will be for 57,069,231 shares.

Proposed use of funds of the placement are as follows:

Cabin Lake exploration	\$800,000
McKenzie Springs and Mt Tremblant exploration	\$450,000
Transaction costs and working capital	\$160,000
Capital Raising fee	\$90,000
Total	\$1,500,000

Peak Asset Management Pty Ltd and Max Capital Pty Ltd acted as Joint Lead Managers ("JLMs") for the Placement and will be paid a fee of 6% of funds raised under the placement. This fee can be paid in cash or in shares at the placement price at the election of the JLMs. Subject to shareholder approval, the JLMs (or their nominee/s) will each be issued 10 million JLM options with a subscription price of A\$0.00001 per option and have an exercise price of A\$0.00975 per share and an expiry of 3 years from the date of issue.

The Company currently has A\$445,000 of convertible notes currently on issue with a maturity date of 12 May 2026. The Board will seek shareholder approval at the upcoming general meeting to achieve early conversion of the notes at the same price of the placement being A\$0.0065 per share. Under the terms of the convertible note each note converted has a 1:1 free attaching option exercisable at A\$0.00845 per share 2 years from the date of issue. Early conversion of the convertible notes will leave the Company debt free.

Indicative Timetable*

Announcement of Transaction	29 October 2025
Complete Tranche 1 Capital Raising	3 November 2025
Shareholder Meeting to approve transaction	Early December 2025
Completion of Transaction and Tranche 2 Capital Raising	Early December 2025

^{*}Note, this timetable is indicative only and may be subject to change.

-ENDS-

Authorised for release by the Board of Fin Resources Limited.

For further information contact: Jason Bontempo – info@finresources.com.au

Competent Person's Statement

The information in this report that relates to Exploration Results is based on information compiled by FIN and reviewed by Mr Gary Powell, who is a Member of the Australian Institute of Geoscientists (# 2278). Mr Powell is a geological consultant to FIN Resources Limited and has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code).

Mr Powell consents to the inclusion in this report of the matters based on his information in the form and context in which it appears and confirms that the information in this announcement provided under Listing Rules 5.12.2 to 5.12.7 is an accurate presentation of the available data and studies for the material mining project.

Forward looking statements

Statements relating to the estimated or expected future production, operating results, cash flows and costs and financial condition of FIN Resources Limited's planned work at the Company's projects and the expected results of such work are forward-looking statements. Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by words such as the following: expects, plans, anticipates, forecasts, believes, intends, estimates, projects, assumes, potential and similar expressions. Forward-looking statements also include reference to events or conditions that will, would, may, could or should occur. Information concerning exploration results and mineral reserve and resource estimates may also be deemed to be forward-looking statements, as it constitutes a prediction of what might be found to be present when and if a project is actually developed.

These forward-looking statements are necessarily based upon a number of estimates and assumptions that, while considered reasonable at the time they are made, are inherently subject to a variety of risks and uncertainties which could cause actual events or results to differ materially from those reflected in the forward-looking statements, including, without limitation: uncertainties related to raising sufficient financing to fund the planned work in a timely manner and on acceptable terms; changes in planned work resulting from logistical, technical or other factors; the possibility that results of work will not fulfil projections/expectations and realize the perceived potential of the Company's projects; uncertainties involved in the interpretation of drilling results and other tests and the estimation of gold reserves and resources; risk of accidents, equipment breakdowns and labour disputes or other unanticipated difficulties or interruptions; the possibility of environmental issues at the Company's projects; the possibility of cost overruns or unanticipated expenses in work programs; the need to obtain permits and comply with environmental laws and regulation's and other government requirements; fluctuations in the price of gold and other risks and uncertainties.

ANNEXURE A

Table A1 Cabin Lake Project – Significant Drill Intercepts (1986-2021)

Arrow, Andrew North, Andrew South and Beaver Zones

Hole_ID	Prospect	From ¹	To ¹	Length ¹	g/t Au ²	g*m ³
86-10	Arrow	34.87	49.59	14.72	8.31	122.3
86-11	Arrow	74.37	80.77	6.40	6.66	42.6
86-12	Arrow	22.16	30.18	8.02	15.70	125.9
	includes	26.52	27.43	0.91	39.78	
86-13	Arrow	58.52	63.09	4.57	4.82	22.0
86-13	Arrow	67.67	75.29	7.62	11.60	88.4
86-15	Arrow	21.88	24.69	2.81	14.46	40.6
86-26	Arrow	58.98	64.92	5.94	9.43	56.0
86-28	Arrow	27.92	41.82	13.90	13.21	183.7
	includes	35.39	36.91	1.52	30.93	
86-34	Andrew North	45.84	48.89	3.05	2.77	8.5
87-35	Andrew North	75.38	79.19	3.81	3.66	13.9
87-36	Andrew North	88.70	92.35	3.65	3.15	11.5
87-49	Beaver	43.50	49.20	5.70	3.40	19.4
87-56	Andrew South	71.70	74.80	3.10	2.65	8.2
87-56	Andrew South	92.20	96.90	4.70	6.10	28.7
88-61	Beaver	88.00	90.00	2.00	5.04	10.1
88-64	Beaver	88.80	91.80	3.00	2.96	8.9
CL-20-01	Arrow	24.63	44.48	19.85	8.02	159.2
	includes	42.70	43.05	0.35	27.30	
CL-20-03	Arrow	41.19	54.84	13.65	6.97	95.1
CL-20-05	Arrow	45.53	46.22	0.69	31.50	
CL-20-06	Arrow	13.05	18.62	5.57	9.98	55.6
	includes	13.55	13.85	0.30	43.40	
CL-20-07	Arrow	28.60	31.15	2.55	9.07	23.1
	includes	29.14	29.64	0.50	30.70	
CL-20-08	Arrow	17.49	49.38	31.89	13.66	435.6
	includes	18.04	18.57	0.53	26.90	
	includes	20.60	20.90	0.30	25.10	
	includes	20.90	21.53	0.63	28.00	
	includes	21.53	22.00	0.47	25.50	
	includes	23.58	23.88	0.30	37.90	
	includes	25.00	25.48	0.48	31.10	
	includes	25.48	25.81	0.33	26.30	
	includes	31.49	32.01	0.52	27.50	
	includes	40.00	40.50	0.50	26.30	
	includes	46.73	47.29	0.56	31.90	
CL-21-10	Beaver	42.60	47.20	4.60	4.97	22.9
CL-21-19	Andrew South	62.20	64.35	2.15	3.38	7.3
CL-21-21	Andrew South	90.05	94.00	3.95	3.48	13.7
CL-21-24	Andrew South	52.01	54.20	2.19	2.80	6.1
CL-21-25	Andrew South	68.68	69.68	1.00	3.47	3.5
CL-21-27	Andrew North	18.20	19.79	1.59	4.63	7.4
CL-21-39	Beaver	12.94	15.00	2.06	3.76	7.8

Notes:

Intercepts are only reported for drillholes completed post-1985. Pre-1986 data requires verification. Collar Coordinates are included in Table A2. All information relates to diamond drill core only There is minimal assay data available for the 2022 diamond drilling program.

1 From, To and Length are measurements in metres, downhole from surface

FIN RESOURCES LIMITED ASX | FIN

² Gold grade (g/t Au) = grams per tonne Gold

g*m = average gold grade x length metres.

Intercept lengths and grade are calculated based on: minimum length of 2m downhole

low cut-off grade of 0.8g/t Au no top cut applied maximum internal dilution length of 2m of sub-grade (<0.8g/t Au) material

Table A2 Cabin Lake Project – Diamond Drillhole Collar information (1986-2022)

Arrow, Andrew North, Andrew South and Beaver Zones

86-10 Arrow 559343 7005403 170 59.1 253 -45 1986 86-11 Arrow 559345 7005406 173 96.3 253 -50 1986 86-13 Arrow 559345 7005474 170 43.9 248 -49 1986 86-14 Arrow 559334 7005427 170 40.2 239 -45 1986 86-15 Arrow 559353 7005342 170 56.4 239 -60 1986 86-16 Arrow 559358 7005321 171 47.9 233 -60 1986 86-17 Arrow 559339 7005255 170 54.0 60 -45 1986 86-18 Arrow 559339 7005321 171 47.9 233 -60 1986 86-19 Arrow 559339 7005422 172 98.5 248 -45 1986 86-21 Arrow	Hole_ID	Prospect	Easting ¹	Northing ¹	RL ²	Depth ³	Azim ⁴	Dip ⁵	Year ⁶
86-11 Arrow \$59359 7005406 173 96.3 253 -50 1986 86-12 Arrow \$59345 7005374 170 43.9 248 -49 1986 86-14 Arrow \$59333 7005342 170 40.2 239 -45 1986 86-15 Arrow \$59353 7005342 170 56.4 239 -45 1986 86-16 Arrow \$59358 7005321 171 35.4 233 -45 1986 86-16 Arrow \$59358 7005321 171 47.9 233 -60 1986 86-17 Arrow \$59363 7005321 171 17.9 243 -60 -45 1986 86-18 Arrow \$59363 7005321 171 17.2 28.2 44 -45 1986 86-20 Arrow \$59363 7005422 172 98.5 248 -45 1986	_	-	_			_		•	
86-12 Arrow 559345 7005374 170 43.9 248 -49 1986 86-13 Arrow 559334 7005427 170 78.0 253 -49 1986 86-14 Arrow 559353 7005342 170 40.2 239 -45 1986 86-15 Arrow 559358 7005321 171 35.4 233 -45 1986 86-17 Arrow 559388 7005321 171 47.9 233 -60 1986 86-18 Arrow 559380 7005321 173 35.40 60 -45 1986 86-19 Arrow 559330 7005422 170 51.8 248 -45 1986 86-20 Arrow 559340 7005422 172 98.5 248 -45 1986 86-21 Arrow 559304 7005310 168 75.3 59 -45 1986 86-23 Arrow		†							
86-13 Arrow 559334 7005427 170 78.0 253 -49 1986 86-14 Arrow 559353 7005342 170 40.2 239 -45 1986 86-16 Arrow 559358 7005321 171 35.4 233 -45 1986 86-17 Arrow 559358 7005321 171 35.4 233 -45 1986 86-18 Arrow 559339 7005255 170 54.0 60 -45 1986 86-19 Arrow 559363 7005322 173 78.4 248 -45 1986 86-20 Arrow 559346 7005452 172 98.5 248 -45 1986 86-21 Arrow 559349 7005432 172 112.2 253 -52 1986 86-21 Arrow 559306 7005342 172 112.2 253 -52 1986 86-21 Arrow									
86-14 Arrow 559353 7005342 170 40.2 239 -45 1986 86-15 Arrow 559353 7005342 170 56.4 239 -60 1986 86-16 Arrow 559358 7005321 171 35.4 233 -45 1986 86-17 Arrow 559338 7005265 170 54.0 60 -45 1986 86-18 Arrow 559363 7005382 173 78.4 248 -45 1986 86-19 Arrow 559363 7005382 170 51.8 248 -45 1986 86-20 Arrow 559349 7005422 172 98.5 248 -45 1986 86-21 Arrow 559349 7005432 172 112.2 253 -52 1986 86-24 Arrow 559306 7005310 168 75.3 59 -45 1986 86-24 Arrow								_	
86-15 Arrow 559353 7005342 170 56.4 239 -60 1986 86-16 Arrow 559358 7005321 171 35.4 233 -45 1986 86-18 Arrow 559389 7005265 170 54.0 60 -45 1986 86-19 Arrow 559363 7005382 173 78.4 248 -45 1986 86-20 Arrow 559363 7005442 170 51.8 248 -45 1986 86-21 Arrow 559346 7005452 172 98.5 248 -45 1986 86-22 Arrow 559304 7005310 168 75.3 59 -45 1986 86-23 Arrow 559306 7005344 168 53.9 74 -45 1986 86-24 Arrow 559323 7005371 168 81.4 69 -45 1986 86-26 Arrow		†							
86-16 Arrow 559358 7005321 171 35.4 233 -45 1986 86-17 Arrow 559358 7005321 171 47.9 233 -60 1986 86-18 Arrow 559339 7005265 170 54.0 60 -45 1986 86-19 Arrow 559363 700542 170 51.8 248 -45 1986 86-20 Arrow 559346 700542 170 51.8 248 -45 1986 86-21 Arrow 559346 7005432 172 112.2 253 -52 1986 86-21 Arrow 559304 7005310 168 75.3 -59 -45 1986 86-24 Arrow 559304 7005341 168 53.9 74 -45 1986 86-25 Arrow 559323 7005371 168 81.4 69 -45 1986 86-24 Arrow									
86-17 Arrow 559358 7005321 171 47.9 233 -60 1986 86-18 Arrow 559339 7005382 173 78.4 248 -45 1986 86-20 Arrow 559320 7005422 170 51.8 248 -45 1986 86-21 Arrow 559346 7005422 172 191.2 253 -52 1986 86-21 Arrow 559349 7005422 172 112.2 253 -52 1986 86-23 Arrow 559340 7005310 168 75.3 59 -45 1986 86-24 Arrow 559300 7005344 168 53.9 74 -45 1986 86-24 Arrow 559323 7005295 168 63.1 53 -45 1986 86-25 Arrow 559264 7005386 168 81.4 69 -45 1986 86-27 Arrow									
86-18 Arrow 559339 7005265 170 54.0 60 .45 1986 86-19 Arrow 559330 7005382 173 78.4 248 .45 1986 86-21 Arrow 559346 7005452 172 98.5 248 .45 1986 86-21 Arrow 559349 7005452 172 98.5 248 .45 1986 86-22 Arrow 559304 7005310 168 75.3 59 .45 1986 86-24 Arrow 559306 7005344 168 53.9 74 .45 1986 86-25 Arrow 559264 7005386 168 63.1 53 .45 1986 86-26 Arrow 559264 7005371 168 122.0 70 .57 1986 86-28 Arrow 559302 7005371 168 57.0 73 .48 1986 86-29 Arrow									
86-19 Arrow 559363 7005382 173 78.4 248 .45 1986 86-20 Arrow 559320 7005442 170 51.8 248 .45 1986 86-21 Arrow 559346 7005452 172 112.2 253 .52 1986 86-22 Arrow 559349 7005432 172 112.2 253 .52 1986 86-23 Arrow 559306 7005341 168 75.3 59 .45 1986 86-24 Arrow 559306 7005344 168 63.1 53 .45 1986 86-25 Arrow 559224 7005386 168 81.4 69 .45 1986 86-26 Arrow 559224 7005374 168 12.0 70 .57 1986 86-28 Arrow 559275 700541 168 106.7 75 .50 1986 86-31 Arrow		†							
86-20 Arrow 559320 7005442 170 51.8 248 .45 1986 86-21 Arrow 559346 7005452 172 98.5 248 .45 1986 86-22 Arrow 559349 7005310 168 75.3 59 .45 1986 86-23 Arrow 559306 7005344 168 53.9 74 .45 1986 86-24 Arrow 559323 7005295 168 63.1 53 .45 1986 86-26 Arrow 559264 7005386 168 81.4 69 .45 1986 86-27 Arrow 559207 7005371 168 122.0 70 .57 1986 86-28 Arrow 559259 7005341 168 106.7 .75 .50 1986 86-29 Arrow 559259 7005441 168 70.1 61 .46 1986 86-31 Arrow		†							
86-21 Arrow 559346 7005452 172 98.5 248 -45 1986 86-22 Arrow 559349 7005432 172 112.2 253 -52 1986 86-23 Arrow 559306 7005344 168 53.9 74 -45 1986 86-25 Arrow 559323 7005295 168 63.1 53 -45 1986 86-26 Arrow 559251 7005371 168 122.0 70 -57 1986 86-27 Arrow 559302 7005371 168 122.0 70 -57 1986 86-28 Arrow 559302 7005374 168 57.0 73 -48 1986 86-29 Arrow 559257 7005341 168 106.7 75 -50 1986 86-31 Arrow 559354 7005771 171 62.8 60 -57 1986 86-32 Beaver									
86-22 Arrow 559349 7005432 172 112.2 253 -52 1986 86-23 Arrow 559304 7005310 168 75.3 59 -45 1986 86-24 Arrow 559306 7005344 168 53.9 74 -45 1986 86-25 Arrow 559323 7005295 168 63.1 53 -45 1986 86-26 Arrow 559264 7005386 168 81.4 69 -45 1986 86-27 Arrow 559251 7005371 168 122.0 70 -57 1986 86-28 Arrow 559302 7005341 168 106.7 75 -50 1986 86-30 Arrow 559359 7005441 168 70.7 -5 -50 1986 86-31 Arrow 559359 7005441 168 70.7 41 -44 1986 86-32 Beaver		†							
86-23 Arrow 559304 7005310 168 75.3 59 -45 1986 86-24 Arrow 559306 7005344 168 53.9 74 -45 1986 86-25 Arrow 559264 7005386 168 81.4 69 -45 1986 86-27 Arrow 559251 7005371 168 122.0 70 -57 1986 86-28 Arrow 559302 7005371 168 100.7 75 -50 1986 86-29 Arrow 559275 7005341 168 100.7 75 -50 1986 86-30 Arrow 559259 7005441 168 70.1 61 -46 1986 86-31 Arrow 559354 700577 171 62.8 60 -57 1986 86-33 Andrew North 558542 7006683 182 105.4 70 -45 1986 86-34 Andrew Nor									
86-24 Arrow 559306 7005344 168 53.9 74 -45 1986 86-25 Arrow 559323 7005295 168 63.1 53 -45 1986 86-26 Arrow 559264 7005386 168 81.4 69 -45 1986 86-27 Arrow 559251 7005371 168 122.0 70 -57 1986 86-28 Arrow 559302 7005374 168 57.0 73 -48 1986 86-29 Arrow 559275 7005341 168 106.7 75 -50 1986 86-30 Arrow 559259 700541 168 70.1 61 -46 1986 86-31 Arrow 559354 7005771 171 74 41 -44 1986 86-31 Arrow 558524 7005683 182 105.4 70 -45 1986 86-32 Beaver									
86-25 Arrow 559323 7005295 168 63.1 53 -45 1986 86-26 Arrow 559264 7005386 168 81.4 69 -45 1986 86-27 Arrow 559302 7005371 168 122.0 70 -57 1986 86-28 Arrow 559302 7005371 168 57.0 73 -48 1986 86-29 Arrow 559259 7005441 168 70.1 61 -46 1986 86-30 Arrow 559354 7005277 171 62.8 60 -57 1986 86-31 Arrow 559354 7005277 171 62.8 60 -57 1986 86-31 Arrow 558944 7005771 171 74.7 41 -44 1986 86-33 Andrew North 558542 7006683 185 61.0 70 -45 1986 87-35 Andrew North									
86-26 Arrow 559264 7005386 168 81.4 69 -45 1986 86-27 Arrow 559251 7005371 168 122.0 70 -57 1986 86-28 Arrow 559302 7005374 168 57.0 73 -48 1986 86-30 Arrow 559275 7005341 168 106.7 75 -50 1986 86-30 Arrow 559259 7005441 168 70.1 61 -46 1986 86-31 Arrow 559354 7005771 171 62.8 60 -57 1986 86-32 Beaver 558924 7005771 171 74.7 41 -44 1986 86-33 Andrew North 558568 7006683 185 61.0 70 -45 1986 87-35 Andrew North 558545 7006669 183 93.6 68 -43 1987 87-36 Anr									
86-27 Arrow 559251 7005371 168 122.0 70 -57 1986 86-28 Arrow 559302 7005374 168 57.0 73 -48 1986 86-29 Arrow 559275 7005341 168 106.7 75 -50 1986 86-30 Arrow 559259 7005441 168 70.1 61 -46 1986 86-31 Arrow 559354 7005277 171 62.8 60 -57 1986 86-32 Beaver 558924 7005771 171 74.7 41 -44 1986 86-33 Andrew North 558542 7006683 185 61.0 70 -45 1986 86-34 Andrew North 558568 7006683 185 61.0 70 -45 1986 87-35 Andrew North 558545 7006660 183 93.6 68 -43 1987 87-37		_							
86-28 Arrow 559302 7005374 168 57.0 73 -48 1986 86-29 Arrow 559275 7005341 168 106.7 75 -50 1986 86-30 Arrow 559259 7005441 168 70.1 61 -46 1986 86-31 Arrow 559354 7005277 171 62.8 60 -57 1986 86-32 Beaver 558924 7005771 171 74.7 41 -44 1986 86-33 Andrew North 558542 7006683 182 105.4 70 -45 1986 86-34 Andrew North 558584 7006689 185 61.0 70 -45 1986 87-35 Andrew North 558533 7006701 182 93.6 68 -43 1987 87-36 Andrew North 558545 7006660 183 93.6 68 -45 1987 87-37		†							
86-29 Arrow 559275 7005341 168 106.7 75 -50 1986 86-30 Arrow 559259 7005441 168 70.1 61 -46 1986 86-31 Arrow 559354 7005277 171 62.8 60 -57 1986 86-32 Beaver 558924 7005771 171 74.7 41 -44 1986 86-33 Andrew North 558542 7006683 182 105.4 70 -45 1986 86-34 Andrew North 558584 7006689 185 61.0 70 -45 1986 87-35 Andrew North 558545 7006600 183 93.6 68 -43 1987 87-36 Andrew North 558545 7006600 183 93.6 68 -45 1987 87-37 Arrow 559339 7005475 171 122.3 241 -50 1987 87-38		†							
86-30 Arrow 559259 7005441 168 70.1 61 -46 1986 86-31 Arrow 559354 7005277 171 62.8 60 -57 1986 86-32 Beaver 558924 7005771 171 74.7 41 -44 1986 86-33 Andrew North 558542 700683 182 105.4 70 -45 1986 86-34 Andrew North 558588 7006689 185 61.0 70 -45 1986 87-35 Andrew North 558533 7006701 182 93.6 68 -43 1987 87-36 Andrew North 558339 7005463 175 170 248 -50 1987 87-37 Arrow 559376 7005463 175 170,7 248 -50 1987 87-39 Arrow 559190 7005382 168 183.5 68 -55 1987 87-40		†							
86-31 Arrow 559354 7005277 171 62.8 60 -57 1986 86-32 Beaver 558924 7005771 171 74.7 41 -44 1986 86-33 Andrew North 558542 7006683 182 105.4 70 -45 1986 87-34 Andrew North 558583 7006701 182 93.6 68 -43 1987 87-35 Andrew North 558545 7006660 183 93.6 68 -45 1987 87-37 Arrow 559339 7005475 171 122.3 241 -50 1987 87-38 Arrow 559376 7005463 175 170.7 248 -50 1987 87-39 Arrow 559376 7005382 168 183.5 68 -55 1987 87-40 Arrow 559279 7005527 169 69.2 238 -45 1987 87-41									
86-32 Beaver 558924 7005771 171 74.7 41 -44 1986 86-33 Andrew North 558542 7006683 182 105.4 70 -45 1986 86-34 Andrew North 558568 7006689 185 61.0 70 -45 1986 87-35 Andrew North 558533 7006701 182 93.6 68 -43 1987 87-36 Andrew North 558545 7006660 183 93.6 68 -45 1987 87-37 Arrow 559339 7005475 171 122.3 241 -50 1987 87-38 Arrow 559376 7005463 175 170.7 248 -50 1987 87-39 Arrow 559190 7005382 168 183.5 68 -55 1987 87-40 Arrow 559279 7005516 168 182.0 61 -55 1987 87-42 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
86-33 Andrew North 558542 7006683 182 105.4 70 -45 1986 86-34 Andrew North 558568 7006689 185 61.0 70 -45 1986 87-35 Andrew North 558533 7006701 182 93.6 68 -43 1987 87-36 Andrew North 558545 7006660 183 93.6 68 -45 1987 87-37 Arrow 559339 7005475 171 122.3 241 -50 1987 87-38 Arrow 559376 7005463 175 170.7 248 -50 1987 87-39 Arrow 559376 7005382 168 183.5 68 -55 1987 87-40 Arrow 559279 7005257 169 69.2 238 -45 1987 87-41 Arrow 559174 7005416 168 182.0 61 -55 1987 87-43 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
86-34 Andrew North 558568 7006689 185 61.0 70 -45 1986 87-35 Andrew North 558533 7006701 182 93.6 68 -43 1987 87-36 Andrew North 558545 7006660 183 93.6 68 -45 1987 87-37 Arrow 559339 7005475 171 122.3 241 -50 1987 87-38 Arrow 559376 7005463 175 170.7 248 -50 1987 87-39 Arrow 559376 7005382 168 183.5 68 -55 1987 87-40 Arrow 559279 7005252 169 69.2 238 -45 1987 87-41 Arrow 559282 700529 170 105.8 238 -60 1987 87-42 Arrow 559174 7005416 168 182.0 61 -55 1987 87-43									
87-35 Andrew North 558533 7006701 182 93.6 68 -43 1987 87-36 Andrew North 558545 7006660 183 93.6 68 -45 1987 87-37 Arrow 559339 7005475 171 122.3 241 -50 1987 87-38 Arrow 559376 7005463 175 170.7 248 -50 1987 87-39 Arrow 559190 7005382 168 183.5 68 -55 1987 87-40 Arrow 559279 7005527 169 69.2 238 -45 1987 87-41 Arrow 559282 7005529 170 105.8 238 -60 1987 87-42 Arrow 559174 7005416 168 182.0 61 -55 1987 87-43 Beaver 558853 7005813 169 90.5 41 -45 1987 87-44									
87-36 Andrew North 558545 7006660 183 93.6 68 -45 1987 87-37 Arrow 559339 7005475 171 122.3 241 -50 1987 87-38 Arrow 559376 7005463 175 170.7 248 -50 1987 87-39 Arrow 559190 7005382 168 183.5 68 -55 1987 87-40 Arrow 559279 7005527 169 69.2 238 -45 1987 87-41 Arrow 559282 7005529 170 105.8 238 -60 1987 87-42 Arrow 559174 7005416 168 182.0 61 -55 1987 87-42 Arrow 559174 7006208 181 136.3 223 -45 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-45									
87-37 Arrow 559339 7005475 171 122.3 241 -50 1987 87-38 Arrow 559376 7005463 175 170.7 248 -50 1987 87-39 Arrow 559190 7005382 168 183.5 68 -55 1987 87-40 Arrow 559279 7005527 169 69.2 238 -45 1987 87-41 Arrow 559282 7005529 170 105.8 238 -60 1987 87-42 Arrow 559174 7005416 168 182.0 61 -55 1987 87-43 Beaver 558853 7005813 169 90.5 41 -45 1987 87-44 Andrew South 559170 7006208 181 136.3 223 -45 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-46		+							
87-38 Arrow 559376 7005463 175 170.7 248 -50 1987 87-39 Arrow 559190 7005382 168 183.5 68 -55 1987 87-40 Arrow 559279 7005527 169 69.2 238 -45 1987 87-41 Arrow 559282 7005529 170 105.8 238 -60 1987 87-42 Arrow 559174 7005416 168 182.0 61 -55 1987 87-43 Beaver 558853 7005813 169 90.5 41 -45 1987 87-44 Andrew South 559170 7006208 181 136.3 223 -45 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-46 Arrow 559442 7005346 183 229.9 235 -50 1987 87-47		†							
87-39 Arrow 559190 7005382 168 183.5 68 -55 1987 87-40 Arrow 559279 7005527 169 69.2 238 -45 1987 87-41 Arrow 559282 7005529 170 105.8 238 -60 1987 87-42 Arrow 559174 7005416 168 182.0 61 -55 1987 87-43 Beaver 558853 7005813 169 90.5 41 -45 1987 87-44 Andrew South 559170 7006208 181 136.3 223 -45 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-45 Andrew South 55943 7005346 183 229.9 235 -50 1987 87									
87-40 Arrow 559279 7005527 169 69.2 238 -45 1987 87-41 Arrow 559282 7005529 170 105.8 238 -60 1987 87-42 Arrow 559174 7005416 168 182.0 61 -55 1987 87-43 Beaver 558853 7005813 169 90.5 41 -45 1987 87-44 Andrew South 559170 7006208 181 136.3 223 -45 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-46 Arrow 559442 7005346 183 229.9 235 -50 1987									
87-41 Arrow 559282 7005529 170 105.8 238 -60 1987 87-42 Arrow 559174 7005416 168 182.0 61 -55 1987 87-43 Beaver 558853 7005813 169 90.5 41 -45 1987 87-44 Andrew South 559170 7006208 181 136.3 223 -45 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-46 Arrow 559442 7005346 183 229.9 235 -50 1987 87-47 Arrow 559433 7005265 190 125.0 250 -45 1987 <td< td=""><td></td><td>†</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		†							
87-42 Arrow 559174 7005416 168 182.0 61 -55 1987 87-43 Beaver 558853 7005813 169 90.5 41 -45 1987 87-44 Andrew South 559170 7006208 181 136.3 223 -45 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-46 Arrow 559442 7005346 183 229.9 235 -50 1987 87-47 Arrow 559463 7005265 190 125.0 250 -45 1987 87-48 Arrow South 559433 7005156 176 68.0 273 -50 1987 87-50 Camp South 558618 7005774 176 77.0 230 -45 1987 <									
87-43 Beaver 558853 7005813 169 90.5 41 -45 1987 87-44 Andrew South 559170 7006208 181 136.3 223 -45 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-46 Arrow 559442 7005346 183 229.9 235 -50 1987 87-47 Arrow 559463 7005265 190 125.0 250 -45 1987 87-48 Arrow South 559433 7005156 176 68.0 273 -50 1987 87-49 Beaver 559055 7005774 176 77.0 230 -45 1987 87-50 Camp South 558618 7005990 177 100.0 50 -45 1987 87-51 Camp South 558620 7006054 181 155.0 230 -74 1987 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
87-44 Andrew South 559170 7006208 181 136.3 223 -45 1987 87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-46 Arrow 559442 7005346 183 229.9 235 -50 1987 87-47 Arrow 559463 7005265 190 125.0 250 -45 1987 87-48 Arrow South 559433 7005156 176 68.0 273 -50 1987 87-49 Beaver 559055 7005774 176 77.0 230 -45 1987 87-50 Camp South 558618 7005990 177 100.0 50 -45 1987 87-51 Camp South 558620 7006054 181 155.0 230 -44 1987 87-52 Camp South 558638 7006074 179 131.0 230 -70 1987									
87-45 Andrew South 559170 7006208 181 108.8 223 -60 1987 87-46 Arrow 559442 7005346 183 229.9 235 -50 1987 87-47 Arrow 559463 7005265 190 125.0 250 -45 1987 87-48 Arrow South 559433 7005156 176 68.0 273 -50 1987 87-49 Beaver 559055 7005774 176 77.0 230 -45 1987 87-50 Camp South 558618 7005990 177 100.0 50 -45 1987 87-51 Camp South 558620 7006054 181 155.0 230 -44 1987 87-52 Camp South 558638 7006074 179 131.0 230 -70 1987 87-53 Andrew North 558690 7006726 193 229.0 250 -69 1987									
87-46 Arrow 559442 7005346 183 229.9 235 -50 1987 87-47 Arrow 559463 7005265 190 125.0 250 -45 1987 87-48 Arrow South 559433 7005156 176 68.0 273 -50 1987 87-49 Beaver 559055 7005774 176 77.0 230 -45 1987 87-50 Camp South 558618 7005990 177 100.0 50 -45 1987 87-51 Camp South 558620 7006054 181 155.0 230 -44 1987 87-52 Camp South 558638 7006074 179 131.0 230 -70 1987 87-53 Andrew North 558690 7006726 193 229.0 250 -69 1987 87-54 Andrew South 559227 7006268 182 160.0 230 -45 1987									
87-47 Arrow 559463 7005265 190 125.0 250 -45 1987 87-48 Arrow South 559433 7005156 176 68.0 273 -50 1987 87-49 Beaver 559055 7005774 176 77.0 230 -45 1987 87-50 Camp South 558618 7005990 177 100.0 50 -45 1987 87-51 Camp South 558620 7006054 181 155.0 230 -44 1987 87-52 Camp South 558638 7006074 179 131.0 230 -70 1987 87-53 Andrew North 558690 7006726 193 229.0 250 -69 1987 87-54 Andrew North 558697 7006590 191 83.0 245 -45 1987 87-55 Andrew South 559227 7006268 182 160.0 230 -45 1987 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>									
87-48 Arrow South 559433 7005156 176 68.0 273 -50 1987 87-49 Beaver 559055 7005774 176 77.0 230 -45 1987 87-50 Camp South 558618 7005990 177 100.0 50 -45 1987 87-51 Camp South 558620 7006054 181 155.0 230 -44 1987 87-52 Camp South 558638 7006074 179 131.0 230 -70 1987 87-53 Andrew North 558690 7006726 193 229.0 250 -69 1987 87-54 Andrew North 558697 7006590 191 83.0 245 -45 1987 87-55 Andrew South 559227 7006268 182 160.0 230 -45 1987 87-56 Andrew South 559214 7006193 181 122.0 230 -45 1987									
87-49 Beaver 559055 7005774 176 77.0 230 -45 1987 87-50 Camp South 558618 7005990 177 100.0 50 -45 1987 87-51 Camp South 558620 7006054 181 155.0 230 -44 1987 87-52 Camp South 558638 7006074 179 131.0 230 -70 1987 87-53 Andrew North 558690 7006726 193 229.0 250 -69 1987 87-54 Andrew North 558697 7006590 191 83.0 245 -45 1987 87-55 Andrew South 559227 7006268 182 160.0 230 -45 1987 87-56 Andrew South 559214 7006193 181 122.0 230 -45 1987		†							
87-50 Camp South 558618 7005990 177 100.0 50 -45 1987 87-51 Camp South 558620 7006054 181 155.0 230 -44 1987 87-52 Camp South 558638 7006074 179 131.0 230 -70 1987 87-53 Andrew North 558690 7006726 193 229.0 250 -69 1987 87-54 Andrew North 558697 7006590 191 83.0 245 -45 1987 87-55 Andrew South 559227 7006268 182 160.0 230 -45 1987 87-56 Andrew South 559214 7006193 181 122.0 230 -45 1987									
87-51 Camp South 558620 7006054 181 155.0 230 -44 1987 87-52 Camp South 558638 7006074 179 131.0 230 -70 1987 87-53 Andrew North 558690 7006726 193 229.0 250 -69 1987 87-54 Andrew North 558697 7006590 191 83.0 245 -45 1987 87-55 Andrew South 559227 7006268 182 160.0 230 -45 1987 87-56 Andrew South 559214 7006193 181 122.0 230 -45 1987		1							
87-52 Camp South 558638 7006074 179 131.0 230 -70 1987 87-53 Andrew North 558690 7006726 193 229.0 250 -69 1987 87-54 Andrew North 558697 7006590 191 83.0 245 -45 1987 87-55 Andrew South 559227 7006268 182 160.0 230 -45 1987 87-56 Andrew South 559214 7006193 181 122.0 230 -45 1987		· ·							
87-53 Andrew North 558690 7006726 193 229.0 250 -69 1987 87-54 Andrew North 558697 7006590 191 83.0 245 -45 1987 87-55 Andrew South 559227 7006268 182 160.0 230 -45 1987 87-56 Andrew South 559214 7006193 181 122.0 230 -45 1987		· ·							
87-54 Andrew North 558697 7006590 191 83.0 245 -45 1987 87-55 Andrew South 559227 7006268 182 160.0 230 -45 1987 87-56 Andrew South 559214 7006193 181 122.0 230 -45 1987		†							
87-55 Andrew South 559227 7006268 182 160.0 230 -45 1987 87-56 Andrew South 559214 7006193 181 122.0 230 -45 1987		+							
87-56 Andrew South 559214 7006193 181 122.0 230 -45 1987		†							
	87-57	Arrow	559491	7005278	189	200.0	250	-50	1987

FIN RESOURCES LIMITED ASX | FIN

⁵ Individual high grade assays >25 g/t Au reported separately

Hole_ID	Prospect	Easting ¹	Northing ¹	RL ²	Depth ³	Azim ⁴	Dip ⁵	Year ⁶
87-58	Arrow	558991	7005310	171	361.0	258	-55	1987
87-59	Arrow	558991	7005310	171	380.0	235	-55	1987
87-60	Camp North	558198	7006466	184	195.0	65	-45	1987
88-61	Beaver	559074	7005787	176	128.0	230	-50	1988
88-62	Beaver	559098	7005773	177	121.0	230	-45	1988
88-63	Beaver	559015	7005815	176	128.0	230	-55	1988
88-64	Beaver	558957	7005874	177	230.0	230	-45	1988
88-65	Beaver	559180	7005670	172	125.0	230	-45	1988
88-66	Beaver	559235	7005603	170	95.0	230	-45	1988
88-67	Andrew South	559231	7006203	181	134.0	230	-55	1988
90-68	Arrow	559222	7005350	168	161.1	73	-55	1990
90-69	Beaver	558899	7005710	168	190.5	41	-55	1990
90-70	Arrow	559160	7005449	168	161.5	63	-63	1990
90-71	Beaver	558956	7005701	168	167.3	50	-55	1990
CL-20-01	Arrow	559326	7005397	169	88.0	190	-45	2022
CL-20-02	Arrow	559327	7005398	169	103.0	190	-60	2022
CL-20-03	Arrow	559325	7005400	169	91.0	245	-70	2022
CL-20-04	Arrow	559319	7005431	169	62.5	240	-45	2022
CL-20-05	Arrow	559320	7005431	169	79.0	205	-45	2022
CL-20-06	Arrow	559340	7005359	170	42.0	250	-45	2022
CL-20-07	Arrow	559341	7005358	170	55.0	185	-45	2022
CL-20-08	Arrow	559340	7005360	169	55.0	305	-45	2022
CL-20-09	Arrow	559306	7005464	170	181.0	290	-57	2022
CL-21-10	Beaver	559061	7005770	176	74.0	230	-45	2021
CL-21-11	Beaver	559061	7005770	176	146.0	230	-65	2021
CL-21-12	Beaver	559063	7005769	176	93.8	195	-55	2021
CL-21-13	Beaver	559020	7005800	176	62.0	230	-45	2021
CL-21-14	Beaver	559020	7005800	176	95.0	230	-65	2021
CL-21-15	Beaver	559020	7005800	176	83.0	190	-45	2021
CL-21-16	Beaver	559020	7005800	176	80.0	260	-45	2021
CL-21-17	Camp South	558814	7005931	172	95.0	230	-45	2021
CL-21-18	Camp South	558814	7005931	172	110.0	260	-55	2021
CL-21-19	Andrew South	559189	7006213	182	100.0	230	-45	2021
CL-21-20	Andrew South	559189	7006213	182	152.0	230	-60	2021
CL-21-21	Andrew South	559189	7006213	182	130.0	190	-45	2021
CL-21-22	Andrew South	559170	7006165	181	104.0	190	-45	2021
CL-21-23	Andrew South	559170	7006165	181	53.0	230	-45	2021
CL-21-24	Andrew South	559170	7006165	181	59.0	230	-65	2021
CL-21-25	Andrew South	559202	7006198	182	101.0	220	-45	2021
CL-21-26	Andrew North	558606	7006655	189	47.0	85	-45	2021
CL-21-27	Andrew North	558606	7006655	189	32.0	55	-45	2021
CL-21-28	Andrew North	558606	7006655	189	47.0	55	-60	2021
CL-21-29	Andrew North	558606	7006655	189	50.0	10	-50	2021
CL-21-30	Andrew South	558999	7006228	186	47.0	220	-45	2021
CL-21-31	Andrew South	558999	7006228	186	26.0	260	-45	2021
CL-21-32	Camp North	558248	7006338	182	36.1	30	-45	2021
CL-21-33	Camp North	558248	7006338	182	38.0	30	-65	2021
CL-21-34	Camp North	558248	7006338	182	33.2	55	-45	2021
CL-21-35	Camp North	558223	7006426	185	161.0	55	-45	2021
CL-21-36	Camp North	558223	7006426	185	55.0	55	-60	2021
CL-21-37	Camp North	558223	7006426	185	101.0	10	-45	2021
CL-21-38	Camp North	558402	7006363	179	62.0	20	-45	2021
CL-21-39	Beaver	559067	7005755	177	53.0	230	-45	2021
CL-21-40	Beaver	559067	7005755	177	77.0	250	-55	2021
CL-22-41	Arrow	559225	7005398	169	136.0	65	-45	2022
CL-22-42	Arrow	559225	7005398	168	137.0	65	-59	2022
				_		_		

FIN RESOURCES LIMITED ASX | FIN

Hole_ID	Prospect	Easting ¹	Northing ¹	RL ²	Depth ³	Azim ⁴	Dip ⁵	Year ⁶
CL-22-43	Arrow	559224	7005398	168	137.0	40	-55	2022
CL-22-44	Arrow	559211	7005425	168	119.0	55	-45	2022
CL-22-45	Arrow	559211	7005425	168	122.0	55	-52	2022
CL-22-46	Arrow	559178	7005435	168	136.0	60	-50	2022
CL-22-47	Arrow	559178	7005435	168	154.0	35	-52	2022
CL-22-48	Arrow	559334	7005427	170	112.0	280	-45	2022
CL-22-49	Beaver	559104	7005731	177	107.0	230	-45	2022
CL-22-50	Beaver	559139	7005700	177	104.0	232	-45	2022

Notes:

- Coordinates are relative to North American Datum 1983 (NAD83) Universal Transverse Mercator (UTM) Zone 11N
- RL = elevation relative to Canadian Geodetic Vertical Datum of 2013 (CGVD2013)
- Depth = downhole depth in metres
- ⁴ Azim = Azimuth in degrees relative to True North
- Dip = inclination of collar in degrees relative to horizontal Year = Year drillhole was completed.

FIN RESOURCES LIMITED ASX | FIN The following maps provide supplementary context to the geophysical datasets referenced throughout this announcement.

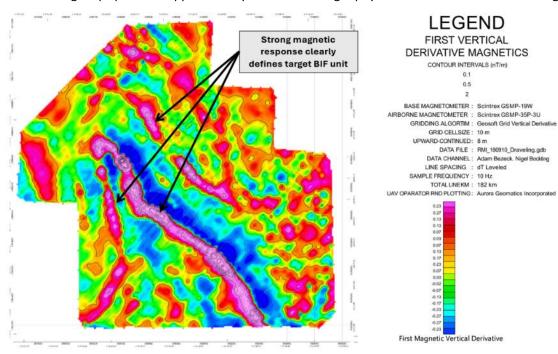


Figure 5. 2018 UAV magnetometer survey (1VD)

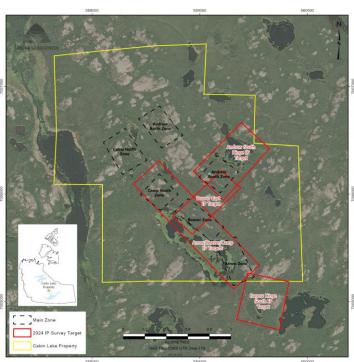


Figure 6. Deep-penetration IP survey grid

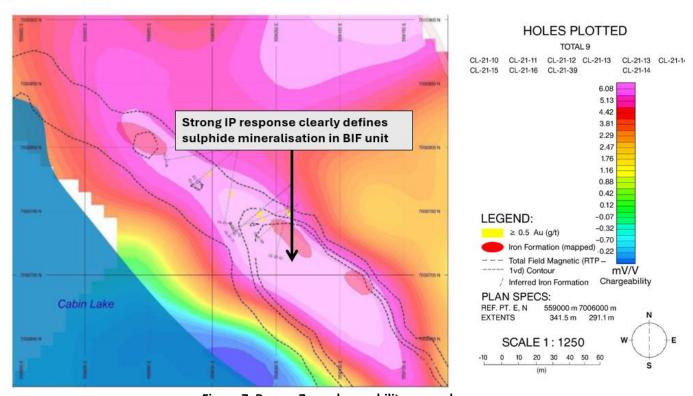


Figure 7. Beaver Zone chargeability anomaly map.

APPENDIX B

JORC Code, 2012 Edition – Table 1 report – Cabin Lake Diamond Drilling (1946-2022)

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cut channels, random chips,	Diamond drill core
techniques	or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These	 Diamond drilling was used to obtain drill core, predominantly from surface to bottom of hole.
	examples should not be taken as limiting the broad meaning of sampling.	 Diamond drilling programs were carried out in the following years: 1946-1947 – Andrew Yellowknife Mines Ltd
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types 	 1985 – Cominco Ltd 1986-1987 – Freeport MacMoRan Gold Company 1988, 1990 – Aber Resources Ltd
		 Core samples were collected from the drill rig for all of the above programs and stored in trays. Diamond core was predominantly stored at the Cabin Lake campsite. Some core trays from the latter programs were heli-lifted to Yellowknife for storage
		 Sampling of drill core involved cutting of the drill core in half lengthways, then collecting sulphide-bearing intervals (pyrite-pyrrhotite ± arsenopyrite) with 'shoulder' samples to ensure mineralised zones were fully sampled. Gold mineralisation is spatially associated with sulphide mineralisation thus logging identified sulphide zones and then marked up for sampling.
	(e.g. submarine nodules) may warrant disclosure of detailed information.	• Typical core sample lengths ranged from approximately 0.30m to 1.50m. Samples are deemed to be representative of the intervals being sampled, and is considered 'industry standard' for sampling of this style of mineralisation
		Surface sampling
		 Rock samples collected at the surface were selected to represent exposed mineralised outcrop.

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Diamond Drilling Programs 1946-47 – Andrew Yellowknife Mines Ltd: 21 holes completed for 3,088.7 ft (941.4m) reported for the 1946 season. 17 holes completed for 4,317.9 ft (1,316.1m) in the 1947 season. There are no records of the diamond drilling techniques used, however it is assumed it was conventional diamond drilling, where the rods are pulled at the end of each core run to retrieve the core from the barrel. Core size was not reported, however given the time period it is assumed it would have been similar to AQ or BQ. Core was not orientated.
		 1985 – Cominco Ltd: Diamond drilling by Shearcorft Mining Exploration Services using a heli-portable Hydracore 28 drill rig: 5 holes for 310m Gold Company. Drilling by conventional wireline, standard tube technique; Core Size is BQ; Core was not orientated.
		 1986-1987 – Freeport McMoRan Gold Company: Drilling by conventional wireline, standard tube technique; 51 holes, 5,758m. Core Size is BQ; Core was not orientated.
		 1988, 1990 – Aber Resources Ltd: Diamond drilling by Midwest Drilling: Drilling by conventional wireline, standard tube technique; 11 holes, 1,641m. Core Size is BQ; Core was not orientated.
		 2020-22 – Rover Metals Corp: Diamond drilling by Northtech Drilling Ltd using a heli-portable Stanvik 2000 drill rig: Drilling by conventional wireline, standard tube technique; 50 holes, 4,424m. HQ core size in 2020; NQ core size in 2021–2022, Core was not orientated.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 Core was logged for every program. Only the drilling conducted by Rover Metals during 2020-2022 recorded basic core recovery and RQD measurements. The 2020-
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	2022 core recoveries were consistently high, and no material issues affecting data quality were identified.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Since half core samples were also taken, no sample bias is believed to exist

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and	Core logging followed 'industry standard' practise.
	geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 For the 2020-2022 program, whole-core photos were taken before sampling; wet photos with tags after cutting.
	Whether logging is qualitative or quantitative in nature. Core (or	 Logging appears to be quantitative and qualitative.
	costean, channel, etc) photography.	All core was logged.
	 The total length and percentage of the relevant intersections logged. 	
Sub-sampling	If core, whether cut or sawn and whether quarter, half or all core	Diamond drill core
techniques and sample preparation	taken.	• 1946-1947 – Andrew Yellowknife Mining Company:
	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	No records of the sampling techniques employed have yet been located. No comment can be made on the nature, quality and appropriateness of the sample
	 For all sample types, the nature, quality and appropriateness of 	preparation techniques for this era.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 Post 1947, all diamond drill core intervals were pre-selected for sampling based on lithology, mineralisation and/or appropriate regular intervals, and were cut lengthways in half. Half core samples were collected at the predetermined intervals, bagged and dispatched to independent assay laboratories for analysis.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	• The techniques employed are considered industry standard and appropriate for the style of mineralisation, at the time of when those activities were undertaken.
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Half core sampling is considered to be representative of the intervals being sampled, and representative of the in situ material collected
	material being samplea.	 Sample sizes are considered to be appropriate to the grain size of the material being sampled
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is 	 Pre-2000 sampling and analytical technique descriptions are not well documented and the following are extracted from various relevant reports.
laboratory tests	considered partial or total.	Diamond Drilling Programs
	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors 	• 1946-1947– Andrew Yellowknife Mines: Assaying was completed by Eco-Tech Labs of Yellowknife. Fifty-three samples were

Criteria	JORC Code explanation	Commentary
	 applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, 	geochemically assayed (?Aqua Regia digest) for gold, with fire assays completed on anomalous samples (>1000 ppb Au).
	blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 1985 – Cominco: Analysis by Chemex Labs Ltd., Vancouver, B.C. Samples were weighed, crushed, pulverised to -150 microns Analysis for gold by Fire Assay with AAS finish.
		 1986-1988 – Aber Resources: Analysis by Loring Laboratories Ltd., Calgary, Alberta. Samples weighed, crushed to -3.2mm, riffle split and pulverised to -105μm Analysis for gold by Fire Assay with AAS finish.
		 1987 – Freeport McMoRan Gold company: Analysis by Barringer Laboratories (NWT) Ltd., Yellowknife, NWT. There is no record of the sample preparation or analysis techniques used to assay for gold.
		 1990 – Aber Resources Ltd: Analysis by Eco-Tech Labs of Yellowknife, NWT. Fifty-three samples were geochemically assayed for gold (?Aqua Regia digest, AAS finish), with Fire Assays completed on anomalous samples (>1000 ppb Au).
		 2020-2024 – Rover Metals Corp: 2020 & 2022: AGAT Laboratories, Mississauga, Ontario. (NWT (ISO/IEC 17025:2017 and ISO 9001:2015 accredited). Samples weighed, crushed to 75% passing 2mm, 250g split, pulverize to 85% passing 75μm, 30g pulp split analysed for Au (Code 202-052 Fire Assay, ICP-OES finish) and 45 elements (Code 201-073 Aqua Regia Digest - Metals Package, ICP-OES finish). 2021 & 2024 Analysis by ALS Geochemistry, Yellowknife, NWT (ISO/IEC 17025:2017 and ISO 9001:2015 accredited). Certified blanks and standards were inserted into the sampling regime at a ratio of approximately one in 20 samples prior to submission. Samples were weighed, crushed to 70% passing 2mm (Code CRU-21). 250g subsample riffle split, pulverised to 85% passing 75μm (Code PUL-21). 30g split then analysed for:

Criteria	JORC Code explanation	Commentary
		 (i) gold by Fire Assay with an Atomic Absorption (AA) finish (Code Au-AA25). (ii) Some samples analysed for 51 elements by Aqua Regia digest with inductively coupled plasma mass spectrometry (ICP-MS) finsh (Code ME-M541) Duplicates and internal standards were also inserted by ALS as part of their internal QA/QC.
		Geophysics & Remote Sensing Surveys
		 1984-1986 – Aber Resources: Ground Magnetics and VLF-EM surveys.
		 1987 – Freeport McMoRan: Airborne Electromagnetic and Ground Magnetic, VLF-EM and IP Surveys, and included: 150 line-kms of VLF surveys 83 line-kms of Total Field and Gradient magnetics survey 26 line-kms of Max Min 1 HLEM (14080 Hz, 7040 Hz, and 3520 Hz, at 50 and 100 metre coil spacings) 75 line-kms of Gradient Array IP surveys 34 line-kms of dipole-dipole and pole-dipole IP surveys.
		 2018-2021 – Rover Critical Minerals: Magnetics, IP, VLF-EM, LiDAR 102 line-km of UAV magnetics over the entire property. 29 line-km of ground Induced Polarization (IP), ground magnetic & VLF-EM over select targets. LiDAR Survey over the entire property.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 Sampling and analytical procedures were reviewed and verified by FIN's geological consultants. Original assay certificates were selected at random and cross-checked against the digital database. Historical assay discrepancies from the Freeport drilling were identified in the late
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	1980s, were checked by Aber Resources at alternate laboratories and resolved.
	Discuss any adjustment to assay data.	 No holes have been twinned. Documentation of primary data exists as scanned hardcopies, or in digital form. Data storage is held by Stockworks Gold Inc (formerly Rover Critical Minerals Corp,

Criteria	JORC Code explanation	Commentary
		formerly Rover Metals Corp), and their geological consultants in Yellowknife, NWT.
		 There is no reporting of any adjustment to assay data
Location of data	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Diamond drilling programs
points		• 1946-1947: Andrew Yellowknife Mines
		There are no coordinates given for the drillholes completed. There are historical geological maps showing their locations.
		 1985-1988: Aber Resources, Freeport McMoRan Gold Company
		Collar positions were recorded in local grid and converted to NAD83 UTM 11N. Drillhole collars are existing and will be surveyed by RTK GPS.
		Downhole surveys were recorded using the acid etch method (an old method of measuring a drillhole's inclination by lowering a sealed glass tube partially filled with dilute hydrofluoric acid. After allowing time for the acid to etch a horizontal line on the inside of the tube, the tube is retrieved and the angle of the etched line from the horizontal is measured, which indicates the drillhole's angle at that specific depth). Surveys were taken at various depth intervals, depending on end of hole depth: i.e. bottom of hole, 2 or 3 intermediate depth intervals, at 50m depth intervals, or none in the case of shallow holes.
		• 1990: Aber Resources
		Collar positions were recorded in local grid and converted to NAD83 UTM 11N. Drillhole collars are existing and will be surveyed by RTK GPS.
		Downhole surveys were recorded using a multi-shot camera. No other information is available as to the tool used.
		• 2020-2024: Rover Metals Corp
		2020 collar positions were surveyed with a Juniper Geode differential GPS to submetre accuracy. 2021-2022 Collar positions were surveyed with a located using handheld GPS. Drillhole collars are existing and will be surveyed by RTK GPS.
		2020. Drillholes were surveyed downhole using the acid-etch method.

Criteria	JORC Code explanation	Commentary
		 2021-2022. Downhole surveys were taken using Reflex Multi-Shot instruments at regular intervals. As a result of magnetic interference from the magnetite/pyrrhotite content of the formations, azimuth is not considered reliable. Pre-2020 activities utilised local grids. Activities carried out from 2020 onwards utilised the Canadian NAD83 UTM 11N grid system. Local grid coordinates have been converted to the NAD83 UTM 11N grid system, and entered into the database. Topographic control is considered to be of high quality (sub-metre) through the DEM data obtained from the 2022 LiDAR survey.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing is variable ranging from 15m where high grade mineralisation has been intersected (e.g. Arrow) to 200m for areas in between the various prospects The 2022 program at the Arrow Zone was designed for early-stage targeting rather than grid resource definition Data spacing is not yet sufficient to estimate Mineral Resources. Sample compositing has not been applied
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The Bugow Iron Formation is folded, and mineralisation occurs in sulphidised iron formation as steeply dipping lenses. Drilling was oriented to intersect these structures as close to perpendicular as practicable. Future programs will employ oriented core to improve structural control.
Sample security	The measures taken to ensure sample security.	 For the 2020-2022 program, samples were bagged, sealed with cable ties, placed in rice bags with security tags, and kept under company supervision until delivery to ALS Geochemistry's laboratory, Yellowknife. Chain-of-custody procedures were maintained throughout. Sample custody for pre-2020 samples was predominantly maintained at the site by company personnel. Contracted transportation companies are believed to have

Criteria	JORC Code explanation	Commentary
		been used to transport from the site to the various laboratories.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	FIN has reviewed the extensive historical (pre-1991) and 2020-2024 datasets. For the 2020-2024 datasets, sampling techniques and QA/QC procedures and considered to be consistent with industry standards. An independent review will be undertaken prior to any Mineral Resource estimation.

Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	• The property comprises one active mineral claim (CL-1, M10076) of approximately 400 ha within Tłįchǫ settlement lands near Russell Lake, ~105 km NW of Yellowknife.	
	historical sites, wilderness or national park and environmental	There is 2.0% Royalty payable to Silver Range Resources Ltd on precious metal production from the property. There is the ability to purchase 75% of the Royalty by cash payments based on certain milestones being achieved.
	with any known impediments to obtaining a licence to operate in	 Access is by helicopter, float/ski aircraft or seasonal winter road. The claim anniversary date is 13 July 2026. An active Winter Access Road Agreement with the Tłįchǫ (Tlicho) Government provides secure ground access.
		 Tenure is in good standing with no known impediments to obtaining a licence to operate in the area.

Criteria	JORC Code explanation	Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Historical work at Cabin Lake included mapping, geophysics, trenching and more than 14,000 m of diamond drilling by previous operators since the first discovery of the mineralisation in 1938.
		 Previous operators include Andrew Yellowknife Mines (1946-1947), Cominco (1985), Freeport MacMaRon (1986-1987), Aber Resources (1987-1900) and Rover Metals Corp (2018-2025). All of these operators contributed greatly to the delineation and understanding of the nature of the mineralisation at Cabin Lake.
		 Description of historical work carried out by these companies are included in the above sections.
Geology	Deposit type, geological setting and style of mineralisation.	 Gold is hosted in sulphide-rich lenses within the Bugow Iron Formation of the Archean Yellowknife Supergroup. Mineralisation is structurally controlled and associated with pyrite+pyrrhotite ±arsenopyrite.
		The deposit type is analogous to the +3.3Moz Lupin gold deposit, located some 365 NE of Cabin Lake
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	 A table comprising relevant drillhole collar details is appended to the main body of this report as Table 2A.
		A table of intercepts is appended to the main body of this report as Table 1A
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	 dip and azimuth of the hole 	
	 down hole length and interception depth 	
	o hole length.	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	

Criteria	JORC Code explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length-weighted averages were used for compositing; no top-cuts or metal equivalents were applied. Reported intervals use a 0.8 g/t Au low cut-off and a minimum 2m downhole width. Internal dilution (i.e. subgrade material <0.8 g/t Au) may be included within reported intervals to a maximum combined consecutive length of 2m. There is no reporting of metal equivalent values.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Mineralised zones are steeply dipping; drilling to date is not sufficiently dense or oriented to establish true widths. All reported intervals are downhole lengths, true width not known True widths will be determined through future oriented-core drilling.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps and sections illustrating drill-hole collars, geophysical anomalies and representative cross-sections are included in the body of this announcement. All figures contain appropriate scales and coordinate references.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All material results, including significant intercepts, are reported in Tables 1A. Where comprehensive reporting of historical assays is not practical, representative results are presented with reference to the underlying datasets.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock 	 The project area has been covered by airborne magnetics, ground magnetics, and induced-polarisation surveys that define high-priority targets correlated with known mineralisation. Historical trenching and limited surface geochemistry have been completed.

Criteria	JORC Code explanation	Commentary
	characteristics; potential deleterious or contaminating substances.	 No metallurgical testwork has been undertaken to date, and no deleterious elements are known beyond those typical of sulphide-rich BIF systems.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). 	 Most holes intersected the BIF sequence; significant gold was not encountered at depth, but mineralisation remains open along strike and down-plunge. Follow-up drilling is recommended at Beaver Zone and deeper targets.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Future work will include confirmatory and step-out drilling at Arrow, and initial drilling at Andrew, Beaver, Camp and West to test high-priority geophysical and geological targets. The program will include re-sampling of available historical core, QA/QC- supported assaying at accredited laboratories, structural studies, and additional geophysical surveys to refine drill targeting.
		 Where appropriate diagrams have been included within the main body of this report to highlight areas of possible extensions and future drilling areas