

CABIN LAKE ASSAYS UPGRADED THROUGH SYSTEMATIC CORE RESAMPLING INCLUDING 31.4m @ 15.2g/t

ASX Release

4 February 2025

ASX: FIN

FIN Resources Limited (ASX: FIN) ("FIN" or "the Company") is pleased to announce an update from its 2025 due diligence re-sampling and targeted new sampling of historical diamond drill core at the Cabin Lake Gold Project in the Northwest Territories, Canada.

The results are highly encouraging and demonstrate FIN's ability to materially enhance confidence in the grade, continuity and scale of the Cabin Lake gold system through disciplined geological analysis and re-sampling of existing core, without undertaking any new drilling.

HIGHLIGHTS

- Re-sampling of historical high grade gold intersections confirms reliability and repeatability of historical sampling and analytical methods, with validated and locally enhanced results returned in key holes, including:
 - CL-20-08: **31.4 m @ 15.2 g/t Au from 17.49 m** vs historic 31.4 m @ 13.8 g/t Au
 - CL-20-03: **13.6 m @ 7.3 g/t Au from 41.19 m** vs historic 13.6 m @ 7.0 g/t Au
- Sampling of previously un-sampled core from two holes of the 2022 diamond drilling program returns anomalous gold mineralisation, indicating potential to extend known mineralisation along strike and at depth and identifying further low cost upside from existing core.
- High grade intercepts are reported using a 0.8 g/t Au cut off, while anomalous results from the 2022 un-sampled core use a 0.15 g/t Au cut off for targeting purposes.
- New sampling of previously unsampled core in CL-21-21 demonstrates gold mineralisation across a broader and more continuous interval than previously recognised. Historical sampling was undertaken in accordance with exploration practices and objectives at the time.
- Petrophysical testing of drill core integrated with magnetic and IP datasets to refine exploration drill targeting and prioritise high confidence drill targets ahead of the maiden drilling program.
- FIN maiden drilling program at Cabin Lake to commence early March.

FIN Director, Jason Bontempo, commented: "The 2025 due diligence results are highly encouraging and reinforce the strength of the Cabin Lake gold system. Re-sampling has validated the historical high grade intercepts and, importantly, has upgraded key results including **31.4 metres at 15.2 grams per tonne gold** from ~17.5 metres in CL-20-08 compared with the historical **31.4 metres at 13.8 grams per tonne**, increasing our confidence in the underlying dataset.

Just as significant, targeted sampling of previously unsampled core has demonstrated broader and more continuous mineralisation than historical selective sampling suggested, particularly at Andrew South. This is a strong example of how FIN creates value through disciplined geology, geophysics and extracting new insights from existing core before committing capital to drilling.

With our geological model strengthened and targeting work advancing through integrated petrophysics, magnetics and IP, we are preparing to commence an approximately 1,500 metre diamond drilling program in early March. We have already engaged with the Tłı̨chǫ Government and other stakeholders, and the response to our proposed activities has been encouraging and supportive."

Corporate Directory

Director
Jason Bontempo

Director
Bruce McFadzean

Director and
Company Secretary
Aaron Bertolatti

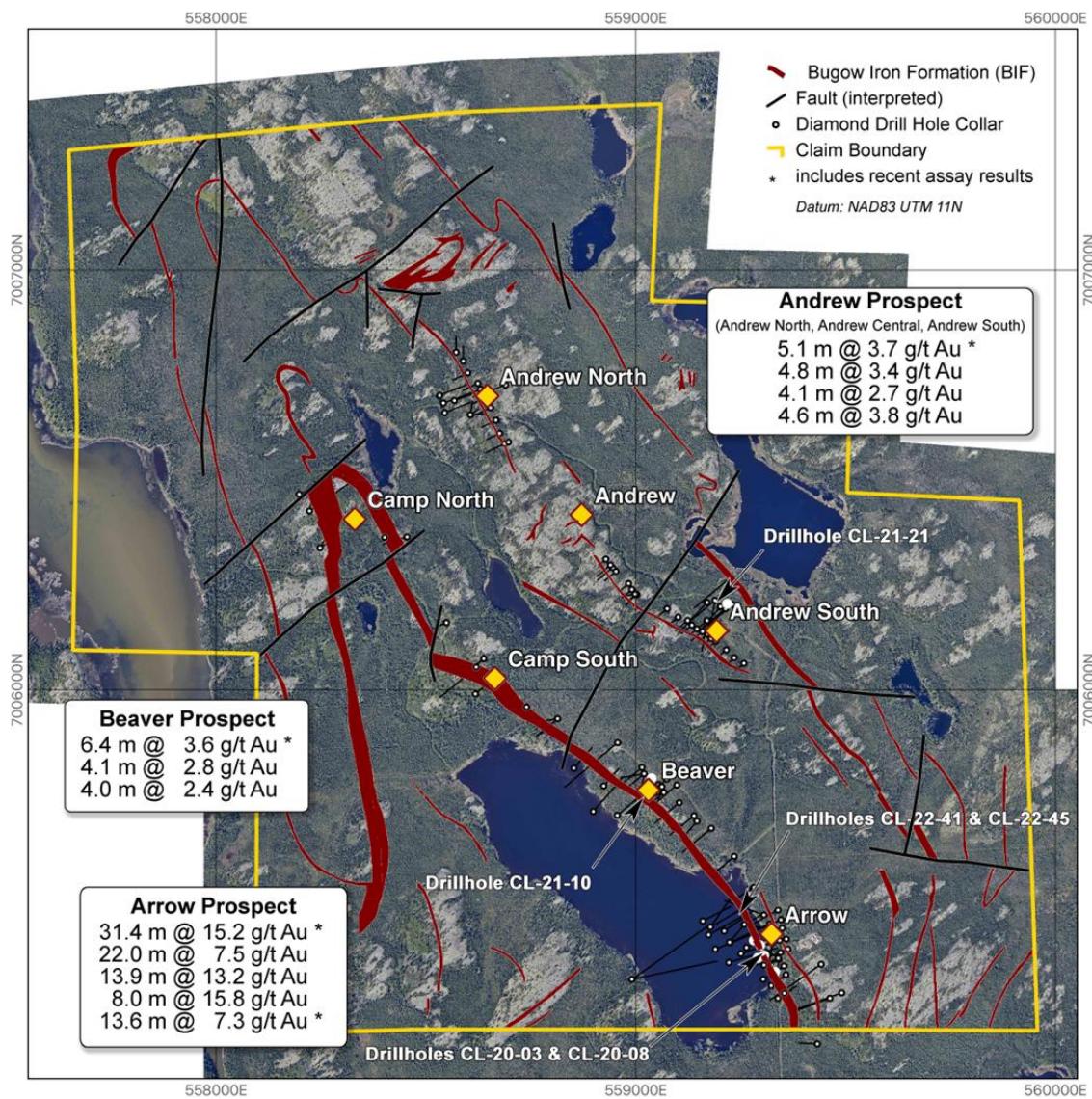
Registered Office
35 Richardson Street
West Perth WA 6005

info@finresources.com.au
www.finresources.com.au

ABN: 25 009 121 644

ASX:FIN

@finresourcesltd


/company/fin-resources-ltd/

2025 Due Diligence Sampling Program Overview

During November and December 2025, prior to completion of the acquisition of Cabin Lake Gold Project, FIN completed a targeted due diligence re-sampling and new sampling program on historical drill core from the 2020-2022 drilling programs.

The 2025 DD program was designed to validate the reliability of historical high grade results and to assess the potential for additional mineralisation within logged but previously un-sampled intervals. Six drillholes were selected for this work and a total of 237 core samples were collected and submitted for analysis.

This approach reflects FIN's disciplined, geology led methodology, focused on extracting additional value and improving geological understanding from existing datasets before deploying capital into new drilling.

Figure 1. Cabin Lake Project – Historical Drillhole Location Plan & location of holes recently sampled

Historical High Grade Assays confirmed

Half core from three historical diamond drill holes (CL-20-03, CL-20-08 and CL-21-10) were re-sampled, with quarter core samples submitted for gold and multi-element analysis to validate sampling methodologies and assay results.

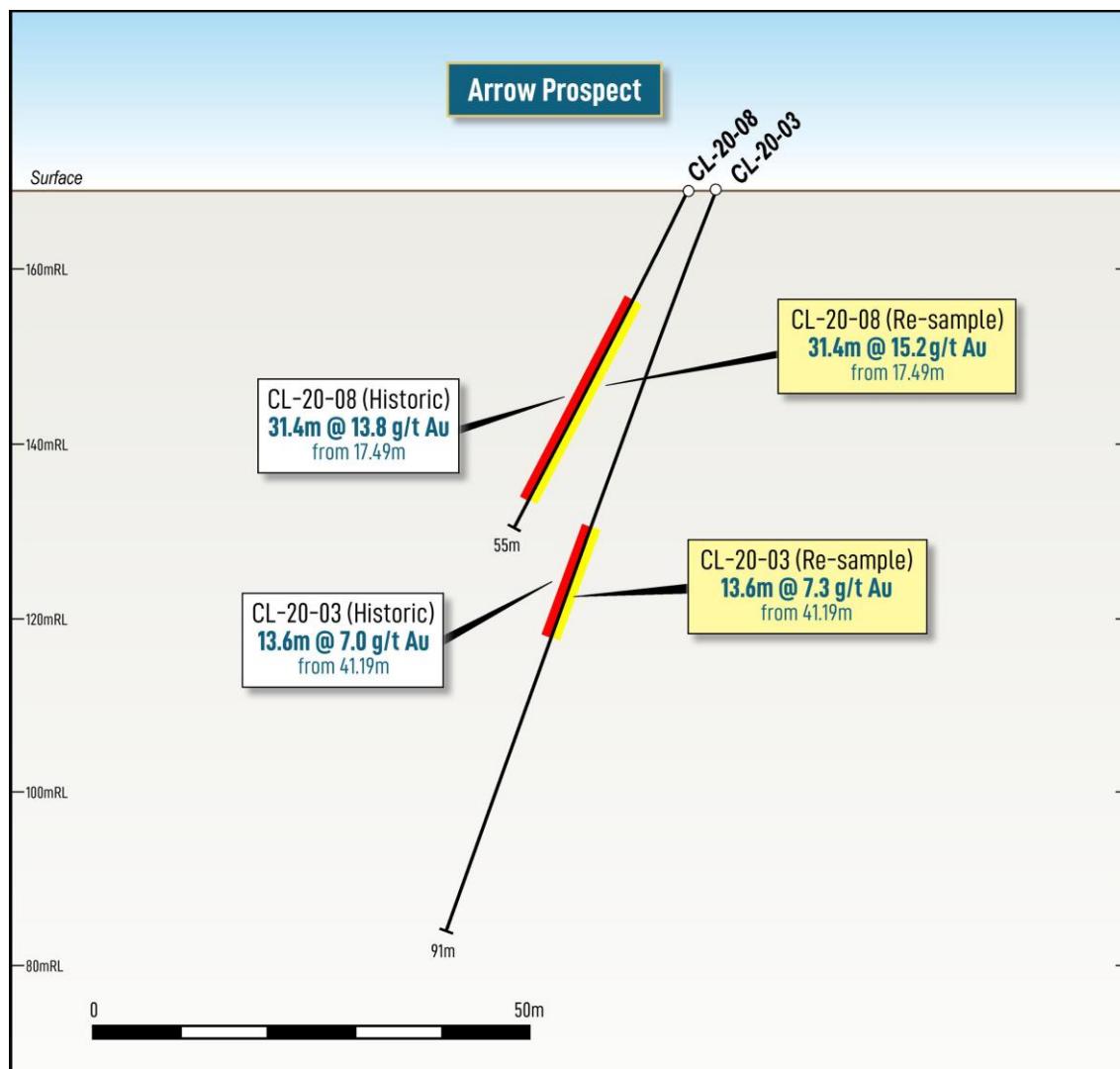
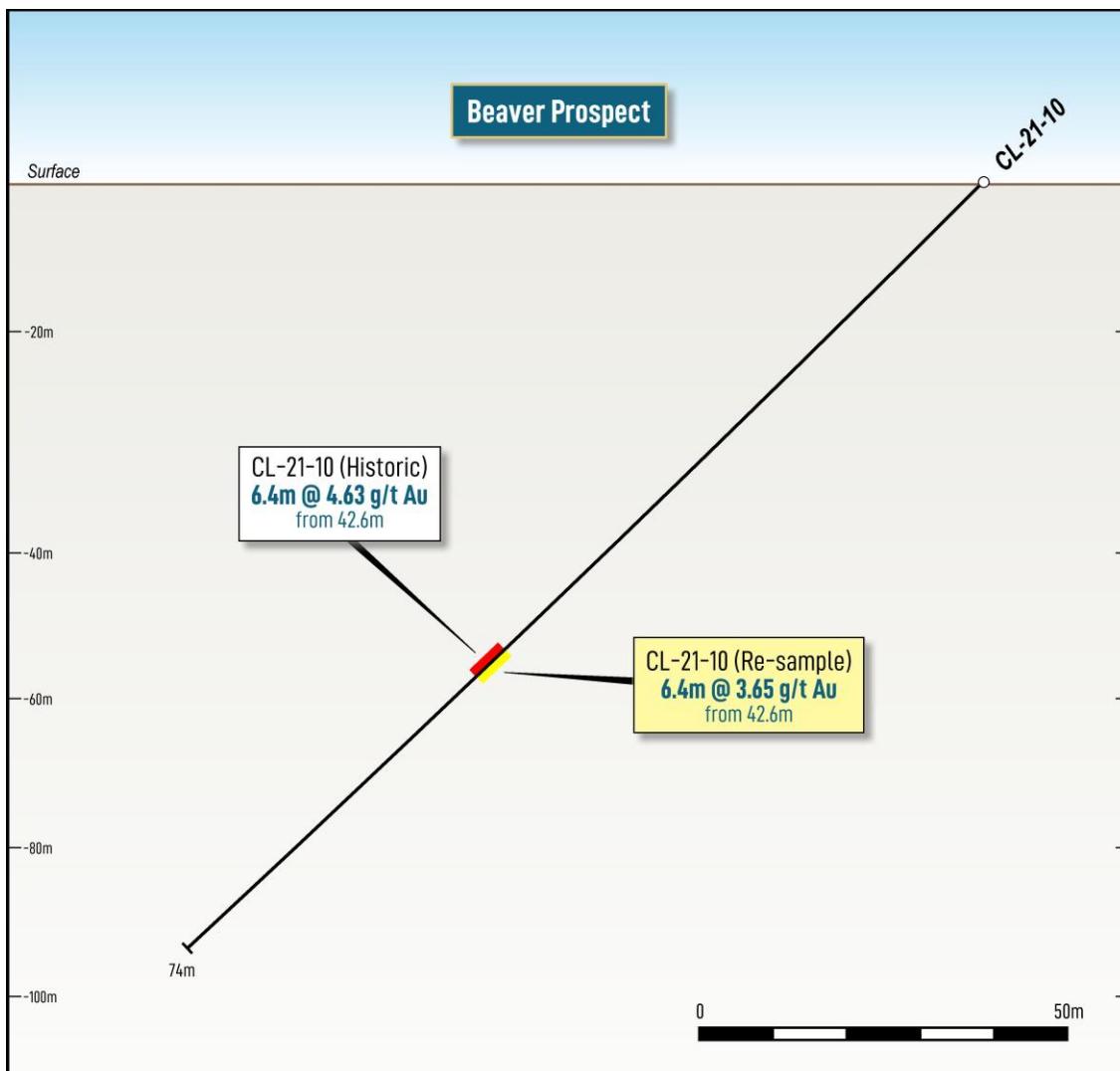

The results are highly encouraging and demonstrate a strong level of repeatability with the historical datasets, particularly for CL-20-03 & CL-20-08, where re-sampled grades closely match or exceed the original assays (Table 1):

Table 1. Re-sampling and assay of historical drill core from three diamond drill holes


Prospect	Hole_ID	From (m)	To (m)	Length (m)	Historical ¹ g/t Au	2025 DD ² g/t Au
Arrow	CL-20-03	41.19	54.84	13.65	6.97	7.30
Arrow	CL-20-08	17.49	48.90	31.41	13.85	15.19
Beaver	CL-21-10	42.60	49.00	6.40	4.63	3.65

Notes:

1. Historical sampling and analysis carried out on half-core
2. 2025 due-diligence (DD) sampling and analysis carried out on quarter-core
3. Collar Coordinates are included in Addendum A, Table 1.
4. From, To and Length are measurements in metres, downhole from surface
5. Gold analysis by Fire Assay with AAS finish. g/t Au = grams per tonne Gold
6. g*m = average gold grade x length metres.
7. Intercept lengths and grade are calculated based on:
 - o low cut-off grade of 0.8g/t Au
 - o no top cut applied
 - o maximum internal dilution length of 2m of sub-grade (<0.8g/t Au) material
8. Individual sample assay results are included in Addendum A, Table 2
9. All intercepts are downhole lengths and true widths are not yet known

Figure 2. Arrow Prospect – Drill Section CL-20-03, CL-20-08

Figure 3. Beaver Prospect – Drill Section CL-21-10

Sampling of previously un-sampled core from CL-21-21 from Andrew South Prospect

Targeted sampling of previously un-sampled core for drillhole CL-21-21 returned additional gold mineralisation, located between two previously reported significant intercepts (Table 2).

The new results confirm that gold mineralisation extends across a broader and more continuous interval than previously recognised from the selective historic sampling. Mineralisation occurs within sulphidised defined Bugow Iron Formation (BIF) and is consistent with geological logging and recent petrographic interpretation.

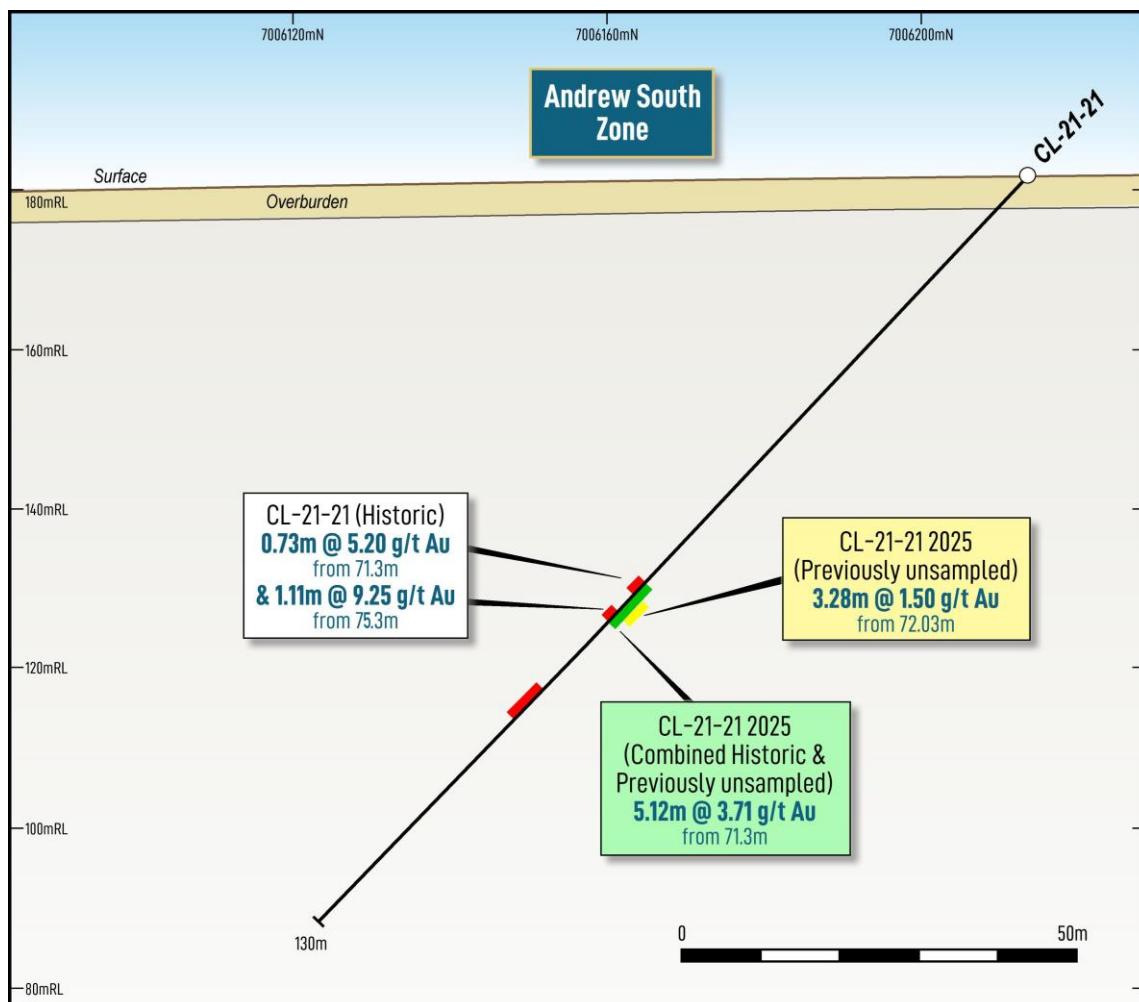

These results demonstrate that gold mineralisation is present between and adjacent to historically reported high grade intervals, reinforcing the potential for wider mineralised zones at Andrew South and highlighting the opportunity to further upgrade the historical dataset through systematic re-sampling of existing core.

Table 2: Sampling of previously un-sampled core CL-21-21 from Andrew South Prospect

Hole_ID	From (m)	To (m)	Length (m)	Historical ¹ g/t Au ³	2025 DD ² g/t Au ³
CL-21-21	71.30	72.03	0.73	5.20	
	72.03	75.31	3.28	previously un sampled	1.50
	75.31	76.42	1.11	9.25	
CL-21-21	71.30	76.42	5.12	3.71	

Notes:

1. Historical sampling and analysis carried out on half-core
2. 2025 due-diligence (DD) sampling and analysis carried out on half-core
3. Gold analysis by Fire Assay with AAS finish. g/t Au = grams per tonne Gold
4. Collar Coordinates are included in Addendum A, Table 1.
5. From, To and Length are measurements in metres, downhole from surface
6. Intercept lengths and grade are calculated based on:
 - o low cut-off grade of 0.8g/t Au
 - o no top cut applied
 - o maximum internal dilution length of 2m of sub-grade (<0.8g/t Au) material
7. Individual sample assay results are included in Addendum A, Table 2
8. The composite interval is calculated using the same cut off and internal dilution parameters described above.

Figure 4. Andrew South Prospect – Drill Section CL-21-21

Sampling of un-sampled drill core from the 2022 Drilling Campaign

A number of the drill holes from the 2022 diamond drilling campaign were not sampled. FIN selected two of these holes (CL-22-41 & CL-22-45) from the Arrow Prospect for sampling to determine if there exists any mineralisation within these holes, and therefore possibly within the other remaining un-sampled core from the 2022 drilling program. Core was cut in half and samples submitted for gold analysis by Fire Assay and AAS finish. In addition, samples were analysed for 48 elements by multi-acid digest with ICP-MS finish, for the purposes of determining potential path-finder elements for future exploration work, and identification of any deleterious elements.

The results of the gold analysis include:

- o CL-22-41: 2.13 m @ 1.02 g/t Au from 100.67 m, including 1.30 m @ 1.40 g/t Au from 101.50 m
- o CL-22-45: 1.59 m @ 0.22 g/t Au from 100.16 m, plus additional anomalous intervals of 0.73 m @ 0.85 g/t Au from 103.93 m, 0.56 m @ 0.61 g/t Au from 105.46 m, and 0.82 m @ 0.36 g/t Au from 109.48 m.

These results confirmed the presence of anomalous (>0.15 g/t Au) gold mineralisation (Table 3) and therefore the potential to extend the current limits of gold mineralisation along strike and at depth.

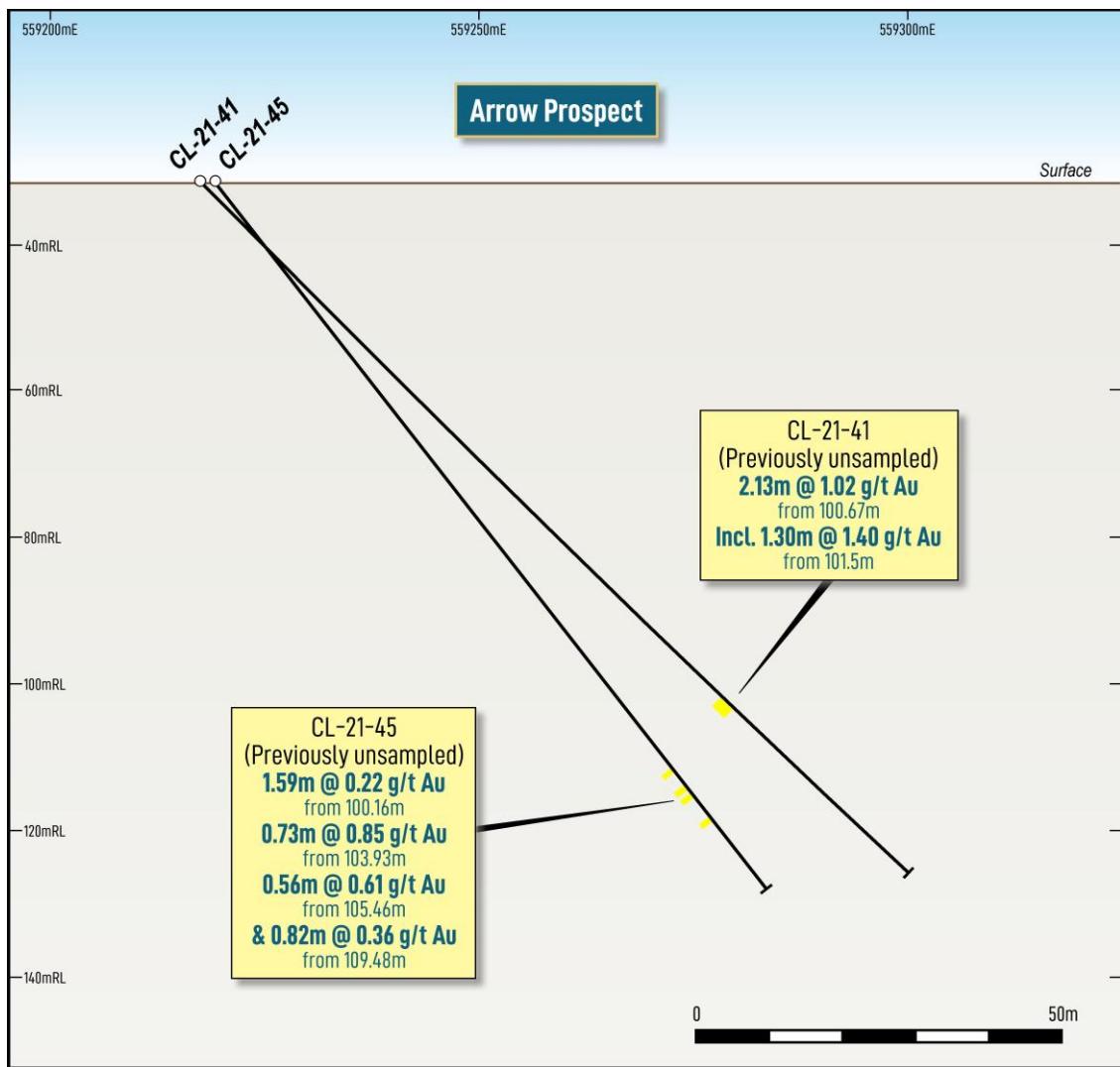

This is highly encouraging and FIN is now considering reviewing the remaining 2022 drill core with the intention of selecting potentially mineralised zones for sampling and analysis.

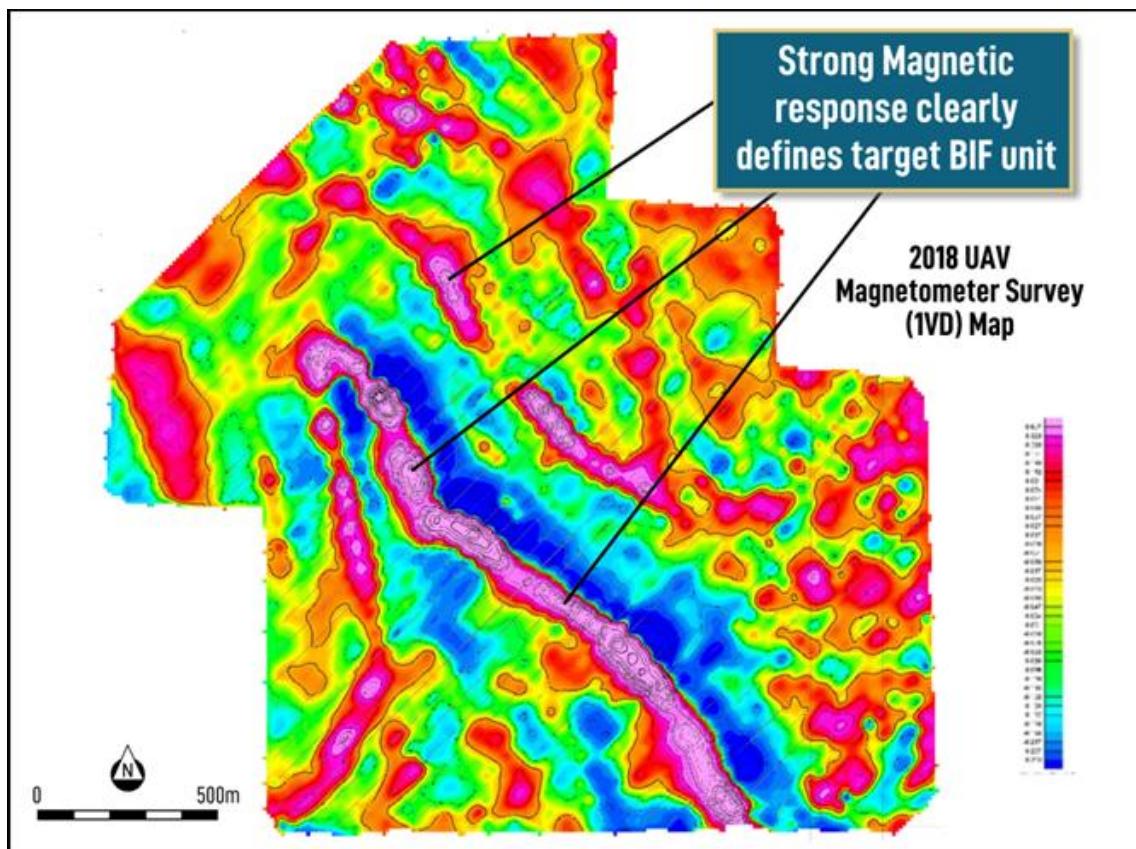
Table 2. Sampling of previously un-sampled core CL-22-41 & CL-22-45 from Arrow Prospect

Hole_ID	From (m)	To (m)	Length (m)	2025 DD ¹ g/t Au
CL-22-41	86.34	87.03	0.69	0.19
	87.03	88.00	0.97	0.06
	88.00	88.38	0.38	0.18
	88.38	89.00	0.62	0.10
	89.00	89.80	0.80	0.01
	89.80	90.67	0.87	0.05
	90.67	91.00	0.33	0.13
	99.25	100.00	0.75	0.18
	100.00	100.67	0.67	0.01
	100.67	101.00	0.33	0.35
	101.00	101.50	0.50	0.50
	101.50	102.15	0.65	1.76
	102.15	102.80	0.65	1.03
	100.16	101.00	0.84	0.15
CL-22-45	101.00	101.75	0.75	0.30
	101.75	102.73	0.98	0.01
	102.73	103.24	0.51	<0.005
	103.24	103.93	0.69	<0.005
	103.93	104.66	0.73	0.85
	104.66	105.46	0.80	0.06
	105.46	106.02	0.56	0.61
	106.02	106.78	0.76	0.05
	106.78	107.80	1.02	0.01
	107.80	108.78	0.98	0.06
	108.78	109.48	0.70	0.03
	109.48	110.00	0.52	0.45
	110.00	110.30	0.30	0.21

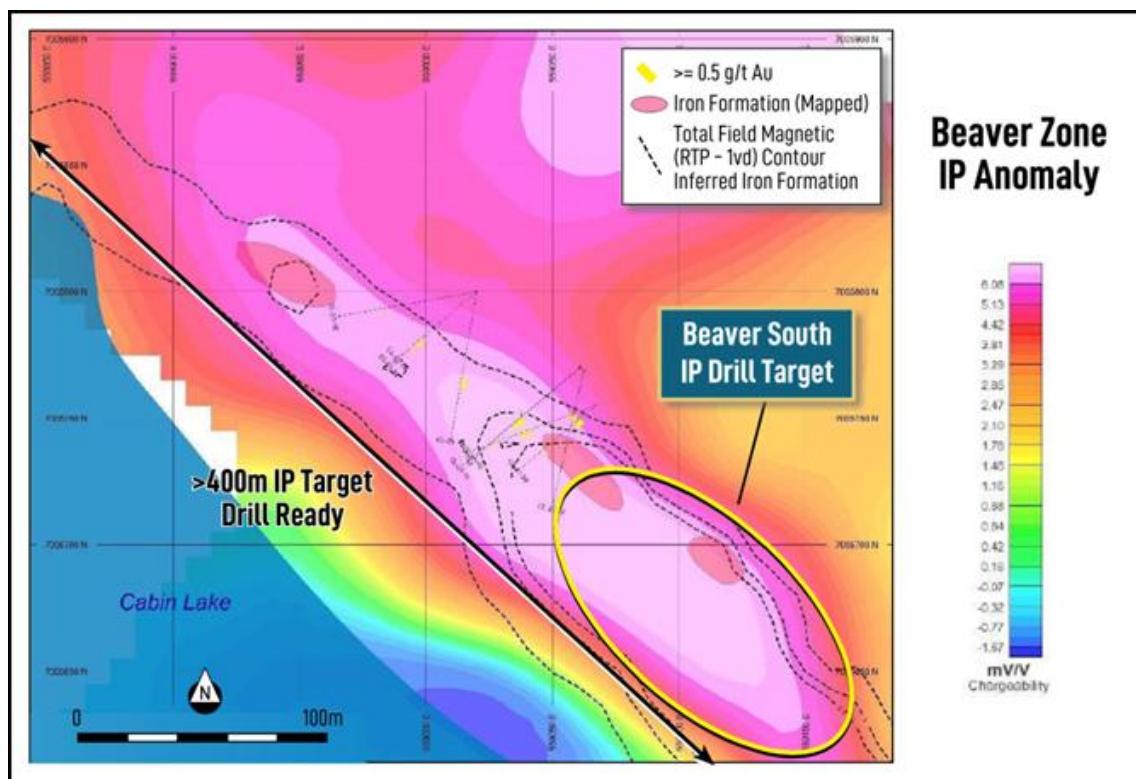
Notes:

1. 2025 due-diligence (DD) sampling and analysis carried out on half-core
2. Gold analysis by Fire Assay with AAS finish. g/t Au = grams per tonne Gold
3. Collar Coordinates are included in Addendum A, Table 1.
4. From, To and Length are measurements in metres, downhole from surface
5. Intercept lengths and grade are calculated based on:
 - o low cut-off grade of 0.15g/t Au
 - o no top cut applied
6. Individual sample assay results are included in Addendum A, Table 2

Figure 5. Arrow Prospect – Drill Section CL-22-41 & CL-22-45


Geophysics

FIN has completed the remodelling of historic geophysical datasets and undertaken petrographic and petrophysical testing of selected drill core to better understand the relationship between gold mineralisation, sulphide development and geological response.


Gold mineralisation at Cabin Lake is hosted within the sulphide Bugow Iron Formation (BIF), a laterally continuous and mappable stratigraphic unit that can be confidently traced along strike using magnetic data (Figure 6). The BIF exhibits a strong and consistent magnetic response, providing a clear framework for regional targeting beneath cover.

Mineralisation is associated with sulphide assemblages including pyrite, pyrrhotite and minor arsenopyrite. These sulphide rich zones generate elevated chargeability responses, producing a repeatable induced polarisation (IP) signature that can be used to identify and prioritise sulphide-hosted gold targets within the BIF (Figure 7).

Integration of petrographic testwork with magnetic and IP targeting is now being used to target across the 15 km mineralised corridor, strengthening confidence in target selection ahead of the maiden drilling program.

Figure 6. Historic Magnetometer Survey identifies target Bugow Iron Formation

Figure 7. Historic Induced Polarisation (IP) survey identifies sulphide rich zones of elevated chargeability

Next Steps

- Finalise integration of petrophysical results with remodelled magnetic and IP datasets to prioritise high confidence drill targets
- Review remaining un sampled 2022 drill core and select additional prospective intervals for low cost sampling
- Complete contractor selection for drilling, helicopter support and analytical services
- Commence a maiden approximately 1,500 metre diamond drilling program in early March
- Continue engagement with the Tjchq Government and local communities to support safe and efficient exploration activities

-ENDS-

Authorised for release by the Board of FIN Resources Limited.

For further information contact:

Jason Bontempo - info@finresources.com.au

Competent Person's Statement

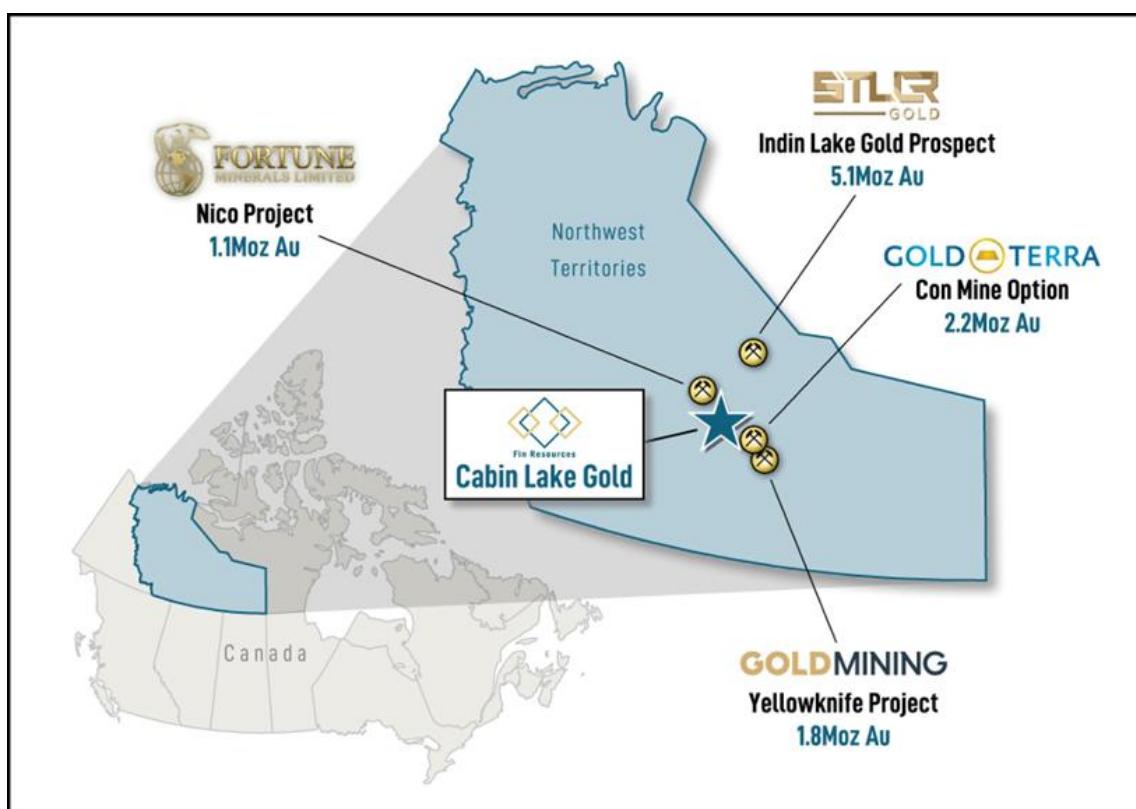
The information in this report that relates to Exploration Results is based on information compiled by FIN and reviewed by Mr Gary Powell, who is a Member of the Australian Institute of Geoscientists. Mr Powell is a geological consultant to FIN Resources Limited and has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking, to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code).

Mr Powell consents to the inclusion in this report of the matters based on his information in the form and context in which it appears and confirms that the information in this announcement provided under Listing Rules 5.12.2 to 5.12.7 is an accurate presentation of the available data and studies for the material mining project. The results are derived from historical drill core, with selected intervals independently re sampled and re assayed by FIN as described in this announcement.

Forward looking statements

Statements relating to the estimated or expected future production, operating results, cash flows and costs and financial condition of FIN Resources Limited's planned work at the Company's projects and the expected results of such work are forward-looking statements.

Forward-looking statements are statements that are not historical facts and are generally, but not always, identified by words such as the following: expects, plans, anticipates, forecasts, believes, intends, estimates, projects, assumes, potential and similar expressions. Forward-looking statements also include reference to events or conditions that will, would, may, could or should occur. Information concerning exploration results and mineral reserve and resource estimates may also be deemed to be forward-looking statements, as it constitutes a prediction of what might be found to be present when and if a project is actually developed.


These forward-looking statements are necessarily based upon a number of estimates and assumptions that, while considered reasonable at the time they are made, are inherently subject to a variety of risks and uncertainties which could cause actual events or results to differ materially from those reflected in the forward-looking statements, including, without limitation: uncertainties related to raising sufficient financing to fund the planned work in a timely manner and on acceptable terms; changes in planned work resulting from logistical, technical or other factors; the possibility that results of work will not fulfil projections/expectations and realize the perceived potential of the Company's projects; uncertainties involved in the interpretation of drilling results and other tests and the estimation of gold reserves and resources; risk of accidents, equipment breakdowns and labour disputes or other unanticipated difficulties or interruptions; the possibility of environmental issues at the Company's projects; the possibility of cost overruns or unanticipated expenses in work programs; the need to obtain permits and comply with environmental laws and regulations and other government requirements; fluctuations in the price of gold and other risks and uncertainties.

ABOUT FIN RESOURCES LIMITED

FIN Resources Limited has executed a binding Sale and Purchase Agreement to acquire a 100% interest in the Cabin Lake Gold Project in Canada's Northwest Territories; a Tier-1 jurisdiction with a proven endowment of over 22 million ounces of historical gold production since 1932. The Cabin Lake Gold Project delivers FIN a fully permitted, drill-ready gold asset with immediate near-surface exploration potential and strong local partnerships.

The Project includes:

- **High-grade near-surface intercepts define** broad zones of mineralisation highlighting priority open-pit exploration targets, particularly the Arrow Zone: **31.4 m @ 15.2 g/t Au** from 17.5 m (477 g*m Au) – CL-20-08
- **Proven host stratigraphy:** Mineralisation hosted within the Bugow Iron Formation of the Archean Slave Craton - a similar gold-bearing stratigraphy to the 3.3 Moz Lupin Gold Mine (>10 g/t Au).
- **Extensive exploration potential:** Eight high-priority, fully permitted drill targets along 15km of the Bugow Iron Formation.
- **Tier 1 jurisdiction and infrastructure:** Located ~60km SE from the NICO mine development and 105km NW of Yellowknife.
- **Strong First Nations engagement:** Existing access agreement in place with the Tł'chǫ Government, who are engaged to undertake on-ground earthworks.

Figure 8. Location of Cabin Lake Gold Project in the Northwest Territories and Mineral Resources within the broader Cabin Lake Gold Project region.

ADDENDUM A

Table 1 Cabin Lake Gold Project – Diamond Drillhole Collar information (1986-2022)

Hole_ID	Prospect	Easting ¹	Northing ¹	RL ²	Depth ³	Azim ⁴	Dip ⁵	Year ⁶
86-10	Arrow	559343	7005403	170	59.1	253	-45	1986
86-11	Arrow	559359	7005406	173	96.3	253	-50	1986
86-12	Arrow	559345	7005374	170	43.9	248	-49	1986
86-13	Arrow	559334	7005427	170	78.0	253	-49	1986
86-14	Arrow	559353	7005342	170	40.2	239	-45	1986
86-15	Arrow	559353	7005342	170	56.4	239	-60	1986
86-16	Arrow	559358	7005321	171	35.4	233	-45	1986
86-17	Arrow	559358	7005321	171	47.9	233	-60	1986
86-18	Arrow	559339	7005265	170	54.0	60	-45	1986
86-19	Arrow	559363	7005382	173	78.4	248	-45	1986
86-20	Arrow	559320	7005442	170	51.8	248	-45	1986
86-21	Arrow	559346	7005452	172	98.5	248	-45	1986
86-22	Arrow	559349	7005432	172	112.2	253	-52	1986
86-23	Arrow	559304	7005310	168	75.3	59	-45	1986
86-24	Arrow	559306	7005344	168	53.9	74	-45	1986
86-25	Arrow	559323	7005295	168	63.1	53	-45	1986
86-26	Arrow	559264	7005386	168	81.4	69	-45	1986
86-27	Arrow	559251	7005371	168	122.0	70	-57	1986
86-28	Arrow	559302	7005374	168	57.0	73	-48	1986
86-29	Arrow	559275	7005341	168	106.7	75	-50	1986
86-30	Arrow	559259	7005441	168	70.1	61	-46	1986
86-31	Arrow	559354	7005277	171	62.8	60	-57	1986
86-32	Beaver	558924	7005771	171	74.7	41	-44	1986
86-33	Andrew North	558542	7006683	182	105.4	70	-45	1986
86-34	Andrew North	558568	7006689	185	61.0	70	-45	1986
87-35	Andrew North	558533	7006701	182	93.6	68	-43	1987
87-36	Andrew North	558545	7006660	183	93.6	68	-45	1987
87-37	Arrow	559339	7005475	171	122.3	241	-50	1987
87-38	Arrow	559376	7005463	175	170.7	248	-50	1987
87-39	Arrow	559190	7005382	168	183.5	68	-55	1987
87-40	Arrow	559279	7005527	169	69.2	238	-45	1987
87-41	Arrow	559282	7005529	170	105.8	238	-60	1987
87-42	Arrow	559174	7005416	168	182.0	61	-55	1987
87-43	Beaver	558853	7005813	169	90.5	41	-45	1987
87-44	Andrew South	559170	7006208	181	136.3	223	-45	1987
87-45	Andrew South	559170	7006208	181	108.8	223	-60	1987
87-46	Arrow	559442	7005346	183	229.9	235	-50	1987
87-47	Arrow	559463	7005265	190	125.0	250	-45	1987
87-48	Arrow South	559433	7005156	176	68.0	273	-50	1987
87-49	Beaver	559055	7005774	176	77.0	230	-45	1987
87-50	Camp South	558618	7005990	177	100.0	50	-45	1987
87-51	Camp South	558620	7006054	181	155.0	230	-44	1987
87-52	Camp South	558638	7006074	179	131.0	230	-70	1987
87-53	Andrew North	558690	7006726	193	229.0	250	-69	1987
87-54	Andrew North	558697	7006590	191	83.0	245	-45	1987

Hole_ID	Prospect	Easting ¹	Northing ¹	RL ²	Depth ³	Azim ⁴	Dip ⁵	Year ⁶
87-55	Andrew South	559227	7006268	182	160.0	230	-45	1987
87-56	Andrew South	559214	7006193	181	122.0	230	-45	1987
87-57	Arrow	559491	7005278	189	200.0	250	-50	1987
87-58	Arrow	558991	7005310	171	361.0	258	-55	1987
87-59	Arrow	558991	7005310	171	380.0	235	-55	1987
87-60	Camp North	558198	7006466	184	195.0	65	-45	1987
88-61	Beaver	559074	7005787	176	128.0	230	-50	1988
88-62	Beaver	559098	7005773	177	121.0	230	-45	1988
88-63	Beaver	559015	7005815	176	128.0	230	-55	1988
88-64	Beaver	558957	7005874	177	230.0	230	-45	1988
88-65	Beaver	559180	7005670	172	125.0	230	-45	1988
88-66	Beaver	559235	7005603	170	95.0	230	-45	1988
88-67	Andrew South	559231	7006203	181	134.0	230	-55	1988
90-68	Arrow	559222	7005350	168	161.1	73	-55	1990
90-69	Beaver	558899	7005710	168	190.5	41	-55	1990
90-70	Arrow	559160	7005449	168	161.5	63	-63	1990
90-71	Beaver	558956	7005701	168	167.3	50	-55	1990
CL-20-01	Arrow	559326	7005397	169	88.0	190	-45	2022
CL-20-02	Arrow	559327	7005398	169	103.0	190	-60	2022
CL-20-03	Arrow	559325	7005400	169	91.0	245	-70	2022
CL-20-04	Arrow	559319	7005431	169	62.5	240	-45	2022
CL-20-05	Arrow	559320	7005431	169	79.0	205	-45	2022
CL-20-06	Arrow	559340	7005359	170	42.0	250	-45	2022
CL-20-07	Arrow	559341	7005358	170	55.0	185	-45	2022
CL-20-08	Arrow	559340	7005360	169	55.0	305	-45	2022
CL-20-09	Arrow	559306	7005464	170	181.0	290	-57	2022
CL-21-10	Beaver	559061	7005770	176	74.0	230	-45	2021
CL-21-11	Beaver	559061	7005770	176	146.0	230	-65	2021
CL-21-12	Beaver	559063	7005769	176	93.8	195	-55	2021
CL-21-13	Beaver	559020	7005800	176	62.0	230	-45	2021
CL-21-14	Beaver	559020	7005800	176	95.0	230	-65	2021
CL-21-15	Beaver	559020	7005800	176	83.0	190	-45	2021
CL-21-16	Beaver	559020	7005800	176	80.0	260	-45	2021
CL-21-17	Camp South	558814	7005931	172	95.0	230	-45	2021
CL-21-18	Camp South	558814	7005931	172	110.0	260	-55	2021
CL-21-19	Andrew South	559189	7006213	182	100.0	230	-45	2021
CL-21-20	Andrew South	559189	7006213	182	152.0	230	-60	2021
CL-21-21	Andrew South	559189	7006213	182	130.0	190	-45	2021
CL-21-22	Andrew South	559170	7006165	181	104.0	190	-45	2021
CL-21-23	Andrew South	559170	7006165	181	53.0	230	-45	2021
CL-21-24	Andrew South	559170	7006165	181	59.0	230	-65	2021
CL-21-25	Andrew South	559202	7006198	182	101.0	220	-45	2021
CL-21-26	Andrew North	558606	7006655	189	47.0	85	-45	2021
CL-21-27	Andrew North	558606	7006655	189	32.0	55	-45	2021
CL-21-28	Andrew North	558606	7006655	189	47.0	55	-60	2021
CL-21-29	Andrew North	558606	7006655	189	50.0	10	-50	2021
CL-21-30	Andrew South	558999	7006228	186	47.0	220	-45	2021

Hole_ID	Prospect	Easting ¹	Northing ¹	RL ²	Depth ³	Azim ⁴	Dip ⁵	Year ⁶
CL-21-31	Andrew South	558999	7006228	186	26.0	260	-45	2021
CL-21-32	Camp North	558248	7006338	182	36.1	30	-45	2021
CL-21-33	Camp North	558248	7006338	182	38.0	30	-65	2021
CL-21-34	Camp North	558248	7006338	182	33.2	55	-45	2021
CL-21-35	Camp North	558223	7006426	185	161.0	55	-45	2021
CL-21-36	Camp North	558223	7006426	185	55.0	55	-60	2021
CL-21-37	Camp North	558223	7006426	185	101.0	10	-45	2021
CL-21-38	Camp North	558402	7006363	179	62.0	20	-45	2021
CL-21-39	Beaver	559067	7005755	177	53.0	230	-45	2021
CL-21-40	Beaver	559067	7005755	177	77.0	250	-55	2021
CL-22-41	Arrow	559225	7005398	169	136.0	65	-45	2022
CL-22-42	Arrow	559225	7005398	168	137.0	65	-59	2022
CL-22-43	Arrow	559224	7005398	168	137.0	40	-55	2022
CL-22-44	Arrow	559211	7005425	168	119.0	55	-45	2022
CL-22-45	Arrow	559211	7005425	168	122.0	55	-52	2022
CL-22-46	Arrow	559178	7005435	168	136.0	60	-50	2022
CL-22-47	Arrow	559178	7005435	168	154.0	35	-52	2022
CL-22-48	Arrow	559334	7005427	170	112.0	280	-45	2022
CL-22-49	Beaver	559104	7005731	177	107.0	230	-45	2022
CL-22-50	Beaver	559139	7005700	177	104.0	232	-45	2022

Notes:

¹ Coordinates are relative to North American Datum 1983 (NAD83) Universal Transverse Mercator (UTM) Zone 11N

² RL = elevation relative to Canadian Geodetic Vertical Datum of 2013 (CGVD2013)

³ Depth = downhole depth in metres

⁴ Azim = Azimuth in degrees relative to True North

⁵ Dip = inclination of collar in degrees relative to horizontal

⁶ Year = Year drillhole was completed.

ADDENDUM B

Table 2 Cabin Lake Gold Project – Analysis results for the 2025 Due Diligence Sampling Program

Prospect	Hole_ID	From	To	Length	Historical g/t Au ¹	2025_DD g/t Au ¹
Arrow	CL-20-03	40.09	41.19	1.10	0.01	0.02
		41.19	42.06	0.87	1.29	0.19
		42.06	42.53	0.47	4.72	4.47
		42.53	43.00	0.47	23.60	30.80
		43.00	43.46	0.46	11.60	20.40
		43.46	43.99	0.53	3.35	3.70
		43.99	44.35	0.36	3.06	8.38
		44.35	44.97	0.62	1.72	1.88
		44.97	45.44	0.47	2.12	2.35
		45.44	45.95	0.51	4.99	1.83
		45.95	46.48	0.53	8.41	7.14
		46.48	46.94	0.46	23.30	20.20
		46.94	47.44	0.50	23.50	18.15
		47.44	47.97	0.53	5.45	5.36
		47.97	48.57	0.60	18.10	20.10
		48.57	49.00	0.43	16.90	18.05
		49.00	49.65	0.65	10.80	14.00
		49.65	49.95	0.30	5.13	5.20
		49.95	50.45	0.50	3.86	2.44
		50.45	50.95	0.50	0.09	0.05
		50.95	51.45	0.50	0.05	0.04
		51.45	52.10	0.65	0.64	0.61
		52.10	52.60	0.50	6.28	5.80
		52.60	53.07	0.47	1.82	1.45
		53.07	53.55	0.48	5.10	4.52
		53.55	54.50	0.95	1.83	1.50
		54.50	54.84	0.34	2.32	3.06
		54.84	57.30	2.46	0.05	0.04
		57.30	58.00	0.70	0.04	0.07
		58.00	58.96	0.96	0.02	0.02
		58.96	59.96	1.00	0.02	0.01
		59.96	61.00	1.04	0.02	0.03
Arrow	CL-20-08	17.49	18.04	0.55	2.58	2.02
		18.04	18.57	0.53	26.90	18.25
		18.57	19.30	0.73	13.60	14.70
		19.30	19.94	0.64	6.54	7.10
		19.94	20.60	0.66	18.20	27.50
		20.60	20.90	0.30	25.10	37.60
		20.90	21.53	0.63	28.00	37.30
		21.53	22.00	0.47	25.50	22.10
		22.00	22.50	0.50	20.80	12.60
		22.50	22.94	0.44	13.50	22.50
		22.94	23.58	0.64	7.44	15.65

Prospect	Hole_ID	From	To	Length	Historical g/t Au ¹	2025_DD g/t Au ¹
		23.58	23.88	0.30	37.90	23.00
		23.88	24.60	0.72	13.20	11.90
		24.60	25.00	0.40	11.60	10.65
		25.00	25.48	0.48	31.10	26.70
		25.48	25.81	0.33	26.30	28.80
		25.81	26.31	0.50	17.00	21.00
		26.31	26.84	0.53	3.84	4.26
		26.84	27.36	0.52	5.14	5.11
		27.36	28.10	0.74	7.25	6.90
		28.10	28.55	0.45	11.60	11.05
		28.55	29.09	0.54	4.92	4.02
		29.09	29.72	0.63	12.10	10.75
		29.72	30.38	0.66	18.60	15.20
		30.38	30.93	0.55	14.70	10.50
		30.93	31.49	0.56	8.36	8.67
		31.49	32.01	0.52	27.50	25.00
		32.01	32.51	0.50	20.60	22.90
		32.51	33.00	0.49	16.30	20.20
		33.00	33.53	0.53	2.46	3.28
		33.53	34.13	0.60	0.83	1.32
		34.13	34.53	0.40	1.52	3.73
		34.53	35.06	0.53	16.50	18.95
		35.06	35.56	0.50	21.40	24.70
		35.56	36.00	0.44	11.00	8.20
		36.00	36.58	0.58	15.20	17.95
		36.58	37.22	0.64	13.80	15.65
		37.22	37.76	0.54	5.45	6.46
		37.76	38.48	0.72	4.13	1.88
		38.48	39.05	0.57	9.00	15.75
		39.05	39.65	0.60	12.50	11.65
		39.65	40.00	0.35	9.50	15.45
		40.00	40.50	0.50	26.30	31.70
		40.50	41.04	0.54	19.30	15.60
		41.04	41.50	0.46	22.00	19.15
		41.50	42.10	0.60	11.80	15.10
		42.10	43.15	1.05	2.25	2.18
		43.15	43.60	0.45	0.35	0.66
		43.60	44.02	0.42	6.89	10.35
		44.02	44.65	0.63	20.70	37.80
		44.65	45.17	0.52	17.90	23.80
		45.17	45.75	0.58	21.90	38.50
		45.75	46.23	0.48	20.00	20.40
		46.23	46.73	0.50	6.29	9.59
		46.73	47.29	0.56	31.90	24.00
		47.29	47.93	0.64	22.40	21.50
		47.93	48.45	0.52	1.81	3.69

Prospect	Hole_ID	From	To	Length	Historical g/t Au ¹	2025_DD g/t Au ¹
		48.45	48.90	0.45	1.94	4.41
		48.90	49.38	0.48	0.82	2.51
		49.38	49.91	0.53	0.25	0.24
		49.91	50.41	0.50	0.39	0.17
		50.41	50.94	0.53	0.24	0.16
Beaver	CL-21-10	41.60	42.10	0.50	0.03	0.03
		42.10	42.60	0.50	0.01	0.04
		42.60	43.10	0.50	1.17	4.13
		43.10	43.60	0.50	1.62	0.55
		43.60	44.10	0.50	0.95	0.52
		44.10	44.60	0.50	2.88	1.44
		44.60	45.10	0.50	7.32	6.17
		45.10	45.60	0.50	6.51	8.96
		45.60	45.90	0.30	22.40	11.40
		45.90	46.40	0.50	5.40	6.38
		46.40	46.70	0.30	8.33	7.72
		46.70	47.20	0.50	1.43	1.17
		47.20	47.70	0.50	0.42	0.76
		47.70	48.20	0.50	1.45	0.73
		48.20	49.00	0.80	7.30	2.81
		49.00	49.50	0.50	0.14	0.06
		49.50	50.00	0.50	0.03	0.01
		50.00	51.00	1.00	0.02	0.02
Andrew South	CL-21-21	72.03	72.31	0.28		0.048
		72.31	73.00	0.69		1.395
		73.00	73.91	0.91		0.567
		73.91	74.35	0.44		2.430
		74.35	74.76	0.41		3.040
		74.76	75.31	0.55		2.040
		76.80	77.80	1.00		0.206
		77.80	78.80	1.00		0.019
		78.80	79.46	0.66		0.025
		79.46	80.11	0.65		<0.005
		80.11	81.00	0.89		0.010
		81.00	81.60	0.60		0.043
		81.60	82.50	0.90		0.225
		82.50	83.00	0.50		0.128
		83.00	83.85	0.85		0.019
		83.85	84.75	0.90		0.008
		84.75	85.60	0.85		0.011
		85.60	86.45	0.85		0.009
		86.45	87.30	0.85		0.020
		87.30	88.25	0.95		<0.005
		88.25	88.80	0.55		0.046
		88.80	94.00	0.52		0.050
		94.00	94.52	0.45		0.010

Prospect	Hole_ID	From	To	Length	Historical g/t Au ¹	2025_DD g/t Au ¹
Arrow	CL-22-41	78.00	79.00	1.00		0.01
		79.00	80.15	1.15		0.02
		80.15	81.00	0.85		0.01
		81.00	82.00	1.00		0.01
		82.00	82.58	0.58		0.14
		82.58	83.15	0.57		0.01
		83.15	84.00	0.85		0.05
		84.00	84.56	0.56		<0.005
		84.56	85.00	0.44		0.02
		85.00	85.57	0.57		0.03
		85.57	86.34	0.77		0.02
		86.34	87.03	0.69		0.19
		87.03	88.00	0.97		0.06
		88.00	88.38	0.38		0.18
		88.38	89.00	0.62		0.10
		89.00	89.80	0.80		0.01
		89.80	90.67	0.87		0.05
		90.67	91.00	0.33		0.13
		91.00	91.65	0.65		0.05
		91.65	92.00	0.35		0.01
		92.00	92.45	0.45		0.09
		92.45	93.04	0.59		0.01
		93.04	93.56	0.52		0.01
		93.56	94.00	0.44		0.02
		94.00	94.68	0.68		0.04
		94.68	95.06	0.38		0.03
		95.06	95.50	0.44		0.06
		95.50	96.34	0.84		0.08
		96.34	96.70	0.36		<0.005
		96.70	97.00	0.30		0.01
		97.00	97.50	0.50		0.01
		97.50	98.20	0.70		0.03
		98.20	98.86	0.66		0.09
		98.86	99.25	0.39		0.02
		99.25	100.00	0.75		0.18
		100.00	100.67	0.67		0.01
		100.67	101.00	0.33		0.35
		101.00	101.50	0.50		0.50
		101.50	102.15	0.65		1.76
		102.15	102.80	0.65		1.03
		102.80	103.80	1.00		<0.005
		103.80	104.80	1.00		<0.005
		112.85	113.75	0.90		<0.005
		113.75	114.45	0.70		0.01
		114.45	115.00	0.55		<0.005
		122.25	123.25	1.00		<0.005

Prospect	Hole_ID	From	To	Length	Historical g/t Au ¹	2025_DD g/t Au ¹
		123.25	124.00	0.75		0.11
		124.00	125.00	1.00		<0.005
		125.00	125.80	0.80		<0.005
		125.80	126.60	0.80		0.10
		126.60	127.00	0.40		<0.005
		130.00	130.55	0.55		<0.005
		130.55	131.05	0.50		0.01
		131.05	132.10	1.05		<0.005
		133.30	133.95	0.65		<0.005
		133.95	134.55	0.60		<0.005
		134.55	135.70	1.15		0.01
Arrow	CL-22-45	79.05	80.00	0.95		0.01
		80.00	80.95	0.95		0.01
		80.95	81.50	0.55		0.02
		81.50	82.55	1.05		0.04
		82.55	83.20	0.65		0.01
		83.20	83.78	0.58		0.01
		83.78	84.75	0.97		<0.005
		84.75	85.25	0.50		<0.005
		85.25	85.65	0.40		<0.005
		85.65	86.31	0.66		0.01
		86.31	87.07	0.76		<0.005
		87.07	87.91	0.84		0.01
		87.91	88.35	0.44		0.01
		88.35	89.00	0.65		0.02
		89.00	89.69	0.69		0.01
		89.69	90.73	1.04		0.04
		90.73	91.33	0.60		0.01
		91.33	91.71	0.38		0.06
		91.71	92.88	1.17		0.44
		92.88	94.12	1.24		<0.005
		94.12	95.00	0.88		0.03
		95.00	95.90	0.90		0.01
		95.90	96.36	0.46		0.01
		96.36	97.40	1.04		0.01
		97.40	98.00	0.60		<0.005
		98.00	98.96	0.96		<0.005
		98.96	99.42	0.46		<0.005
		99.42	100.16	0.74		0.04
		100.16	101.00	0.84		0.15
		101.00	101.75	0.75		0.30
		101.75	102.73	0.98		0.01
		102.73	103.24	0.51		<0.005
		103.24	103.93	0.69		<0.005
		103.93	104.66	0.73		0.85
		104.66	105.46	0.80		0.06

Prospect	Hole_ID	From	To	Length	Historical g/t Au ¹	2025_DD g/t Au ¹
		105.46	106.02	0.56		0.61
		106.02	106.78	0.76		0.05
		106.78	107.80	1.02		0.01
		107.80	108.78	0.98		0.06
		108.78	109.48	0.70		0.03
		109.48	110.00	0.52		0.45
		110.00	110.30	0.30		0.21
		110.30	111.23	0.93		<0.005
		111.23	112.04	0.81		<0.005
		112.04	112.81	0.77		<0.005

Notes:

1. Collar Coordinates are included in Table A1
2. From, To and Length are measurements in metres, downhole from surface
3. Gold analysis by Fire Assay with AAS finish. g/t Au = grams per tonne Gold
4. Sampling and analysis carried out on half-core or quarter core

APPENDIX A

JORC Code, 2012 Edition – Table 1 report – Cabin Lake Gold Project Diamond Drilling

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"><i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i><i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i><i>Aspects of the determination of mineralisation that are Material to the Public Report.</i><i>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</i>	<p>Diamond drill core (pre 2025)</p> <ul style="list-style-type: none">Diamond drilling was used to obtain drill core, predominantly from surface to bottom of hole.Diamond drilling programs were carried out in the following years:<ul style="list-style-type: none">1946-1947 – Andrew Yellowknife Mines Ltd1985 – Cominco Ltd1986-1987 – Freeport McMoran Gold Company1988, 1990 – Aber Resources Ltd2020-2022 – Rover Metals CorpCore samples were collected from the drill rig for all of the above programs and stored in trays. Diamond core was predominantly stored at the Cabin Lake campsite. Some core trays from the latter programs were heli-lifted to Yellowknife for storageSampling of drill core involved cutting of the drill core in half lengthways, then collecting sulphide-bearing intervals (pyrite–pyrrhotite ± arsenopyrite) with 'shoulder' samples to ensure mineralised zones were fully sampled. Gold mineralisation is spatially associated with sulphide mineralisation thus logging identified sulphide zones and then marked up for sampling.Typical core sample lengths ranged from approximately 0.30m to 1.50m. Samples are deemed to be representative of the intervals being sampled, and is considered 'industry standard' for sampling of this style of mineralisation <p>Fin Resources Ltd (2025)</p> <ul style="list-style-type: none">Historical drill core was cut in half and sampled at predetermined intervals <p>Historical Surface sampling (pre 2025)</p> <ul style="list-style-type: none">Rock samples collected at the surface were selected to represent exposed mineralised outcrop.

Criteria	JORC Code explanation	Commentary
Drilling techniques	<ul style="list-style-type: none">Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	<p>Diamond Drilling Programs (pre-2025)</p> <ul style="list-style-type: none">1946-47 – Andrew Yellowknife Mines Ltd: 21 holes completed for 3,088.7 ft (941.4m) reported for the 1946 season. 17 holes completed for 4,317.9 ft (1,316.1m) in the 1947 season. There are no records of the diamond drilling techniques used, however it is assumed it was conventional diamond drilling, where the rods are pulled at the end of each core run to retrieve the core from the barrel. Core size was not reported, however given the time period it is assumed it would have been similar to AQ or BQ. Core was not orientated.1985 – Cominco Ltd: Diamond drilling by Shearcorft Mining Exploration Services using a heli-portable Hydracore 28 drill rig: 5 holes for 310m Gold Company. Drilling by conventional wireline, standard tube technique; Core Size is BQ; Core was not orientated.1986-1987 – Freeport McMoran Gold Company: Drilling by conventional wireline, standard tube technique; 51 holes, 5,758m. Core Size is BQ; Core was not orientated.1988, 1990 – Aber Resources Ltd: Diamond drilling by Midwest Drilling: Drilling by conventional wireline, standard tube technique; 11 holes, 1,641m. Core Size is BQ; Core was not orientated.2020-22 – Rover Metals Corp: Diamond drilling by Northtech Drilling Ltd using a heli-portable Stavik 2000 drill rig: Drilling by conventional wireline, standard tube technique; 50 holes, 4,424m. HQ core size in 2020; NQ core size in 2021–2022, Core was not orientated.
Drill sample recovery	<ul style="list-style-type: none">Method of recording and assessing core and chip sample recoveries and results assessed.Measures taken to maximise sample recovery and ensure representative nature of the samples.Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	<p>Diamond Drilling Programs (pre-2025)</p> <ul style="list-style-type: none">Core was logged for every program. Only the drilling conducted by Rover Metals Corp during 2020-2022 recorded basic core recovery and RQD measurements. The 2020-2022 core recoveries were consistently high, and no material issues affecting data quality were identified.Since half core samples were also taken, no sample bias is believed to exist

Criteria	JORC Code explanation	Commentary
Logging	<ul style="list-style-type: none"> <i>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</i> <i>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</i> <i>The total length and percentage of the relevant intersections logged.</i> 	<p>Diamond Drilling Programs (pre-2025)</p> <ul style="list-style-type: none"> Core logging followed 'industry standard' practise. For the 2020-2022 programs, whole-core photos were taken before sampling; wet photos with tags after cutting. Logging appears to be quantitative and qualitative. All core was logged.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> <i>If core, whether cut or sawn and whether quarter, half or all core taken.</i> <i>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</i> <i>For all sample types, the nature, quality and appropriateness of the sample preparation technique.</i> <i>Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.</i> <i>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.</i> <i>Whether sample sizes are appropriate to the grain size of the material being sampled.</i> 	<p>Diamond Drilling Programs (pre-2025)</p> <ul style="list-style-type: none"> 1946-1947 – Andrew Yellowknife Mining Company: No records of the sampling techniques employed have yet been located. No comment can be made on the nature, quality and appropriateness of the sample preparation techniques for this era. Post 1947, all diamond drill core intervals were pre-selected for sampling based on lithology, mineralisation and/or appropriate regular intervals, and were cut lengthways in half. Half core samples were collected at the predetermined intervals, bagged and dispatched to independent assay laboratories for analysis. The techniques employed are considered industry standard and appropriate for the style of mineralisation, at the time of when those activities were undertaken. Half core sampling is considered to be representative of the intervals being sampled, and representative of the in situ material collected Sample sizes are considered to be appropriate to the grain size of the material being sampled <p>Fin Resources Ltd (2025)</p> <ul style="list-style-type: none"> Historical diamond drill core intervals were pre-selected for sampling based on lithology, mineralisation and/or appropriate regular intervals, and were cut lengthways in half. Half core or quarter core samples were collected at the predetermined intervals, bagged and dispatched to an independent assay laboratory for analysis.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	<ul style="list-style-type: none"><i>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.</i><i>For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.</i><i>Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</i>	<ul style="list-style-type: none">The techniques employed are considered industry standard and appropriate for the style of mineralisation, at the time of when those activities were undertaken.Half core and quarter core sampling is considered to be representative of the intervals being sampled, and representative of the in situ material collectedSample sizes are considered to be appropriate to the grain size of the material being sampledPre-2000 sampling and analytical technique descriptions are not well documented and the following are extracted from various relevant reports. <p>Diamond Drilling Programs (pre-2025)</p> <ul style="list-style-type: none">1946-1947 – Andrew Yellowknife Mines: Assaying was completed by Eco-Tech Labs of Yellowknife. Fifty-three samples were geochemically assayed (?Aqua Regia digest) for gold, with fire assays completed on anomalous samples (>1000 ppb Au).1985 – Cominco:<ul style="list-style-type: none">Analysis by Chemex Labs Ltd., Vancouver, B.C.Samples were weighed, crushed, pulverised to -150 micronsAnalysis for gold by Fire Assay with AAS finish.1986-1988 – Aber Resources:<ul style="list-style-type: none">Analysis by Loring Laboratories Ltd., Calgary, Alberta.Samples weighed, crushed to -3.2mm, riffle split and pulverised to -105µmAnalysis for gold by Fire Assay with AAS finish.1987 – Freeport McMoran Gold company:<ul style="list-style-type: none">Analysis by Barringer Laboratories (NWT) Ltd., Yellowknife, NWT.There is no record of the sample preparation or analysis techniques used to assay for gold.1990 – Aber Resources Ltd:<ul style="list-style-type: none">Analysis by Eco-Tech Labs of Yellowknife, NWT. Fifty-three samples were

Criteria	JORC Code explanation	Commentary
		<p>geochemically assayed for gold (?Aqua Regia digest, AAS finish), with Fire Assays completed on anomalous samples (>1000 ppb Au).</p> <ul style="list-style-type: none">• 2020-2024 – Rover Metals Corp:<ul style="list-style-type: none">◦ 2020 & 2022: AGAT Laboratories, Mississauga, Ontario. (NWT (ISO/IEC 17025:2017 and ISO 9001:2015 accredited). Samples weighed, crushed to 75% passing 2mm, 250g split, pulverize to 85% passing 75µm, 30g pulp split analysed for Au (Code 202-052 Fire Assay, ICP-OES finish) and 45 elements (Code 201-073 Aqua Regia Digest - Metals Package, ICP-OES finish).◦ 2021 & 2024 Analysis by ALS Geochemistry, Yellowknife, NWT (ISO/IEC 17025:2017 and ISO 9001:2015 accredited). Certified blanks and standards were inserted into the sampling regime at a ratio of approximately one in 20 samples prior to submission. Samples were weighed, crushed to 70% passing 2mm (Code CRU-21). 250g subsample riffle split, pulverised to 85% passing 75µm (Code PUL-21). 30g split then analysed for:<ul style="list-style-type: none">(i) gold by Fire Assay with an Atomic Absorption (AA) finish (Code Au-AA25).(ii) Some samples analysed for 51 elements by Aqua Regia digest with inductively coupled plasma mass spectrometry (ICP-MS) finish (Code ME-M541)Duplicates and internal standards were also inserted by ALS as part of their internal QA/QC.

Criteria	JORC Code explanation	Commentary
		<ul style="list-style-type: none"> ○ 83 line-kms of Total Field and Gradient magnetics survey ○ 26 line-kms of Max Min 1 HLEM (14080 Hz, 7040 Hz, and 3520 Hz, at 50 and 100 metre coil spacings) ○ 75 line-kms of Gradient Array IP surveys ○ 34 line-kms of dipole-dipole and pole-dipole IP surveys. ● 2018-2021 – Rover Metals Corp: Magnetics, IP, VLF-EM, LiDAR <ul style="list-style-type: none"> ○ 102 line-km of UAV magnetics over the entire property. ○ 29 line-km of ground Induced Polarization (IP), ground magnetic & VLF-EM over select targets. ○ LiDAR Survey over the entire property.
Verification of sampling and assaying	<ul style="list-style-type: none"> ● <i>The verification of significant intersections by either independent or alternative company personnel.</i> ● <i>The use of twinned holes.</i> ● <i>Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.</i> ● <i>Discuss any adjustment to assay data.</i> 	<ul style="list-style-type: none"> ● Sampling and analytical procedures were reviewed and verified by FIN's geological consultants. Original assay certificates were selected at random and cross-checked against the digital database. ● Historical assay discrepancies from the Freeport drilling were identified in the late 1980s, were checked by Aber Resources at alternate laboratories and resolved. ● No holes have been twinned. ● Documentation of primary data exists as scanned hardcopies, or in digital form. Data storage is held by Stockworks Gold Inc (formerly Rover Metals Corp), and their geological consultants in Yellowknife, NWT. ● There is no reporting of any adjustment to assay data
Location of data points	<ul style="list-style-type: none"> ● <i>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.</i> ● <i>Specification of the grid system used.</i> ● <i>Quality and adequacy of topographic control.</i> 	<p>Diamond drilling programs (per-2025)</p> <ul style="list-style-type: none"> ● 1946-1947: Andrew Yellowknife Mines <p>There are no coordinates given for the drillholes completed. There are historical geological maps showing their locations.</p> <ul style="list-style-type: none"> ● 1985-1988: Aber Resources, Freeport McMoran Gold Company <p>Collar positions were recorded in local grid and converted to NAD83 UTM 11N.</p>

Criteria	JORC Code explanation	Commentary
		<p>Drillhole collars are existing and will be surveyed by RTK GPS.</p> <p>Downhole surveys were recorded using the acid etch method (an old method of measuring a drillhole's inclination by lowering a sealed glass tube partially filled with dilute hydrofluoric acid. After allowing time for the acid to etch a horizontal line on the inside of the tube, the tube is retrieved and the angle of the etched line from the horizontal is measured, which indicates the drillhole's angle at that specific depth). Surveys were taken at various depth intervals, depending on end of hole depth: i.e. bottom of hole, 2 or 3 intermediate depth intervals, at 50m depth intervals, or none in the case of shallow holes.</p> <ul style="list-style-type: none">• 1990: Aber Resources <p>Collar positions were recorded in local grid and converted to NAD83 UTM 11N. Drillhole collars are existing and will be surveyed by RTK GPS.</p> <p>Downhole surveys were recorded using a multi-shot camera. No other information is available as to the tool used.</p> <ul style="list-style-type: none">• 2020-2024: Rover Metals Corp <p>2020 collar positions were surveyed with a Juniper Geode differential GPS to sub-metre accuracy. 2021-2022 Collar positions were surveyed with a located using handheld GPS. Drillhole collars are existing and will be surveyed by RTK GPS.</p> <p>Downhole surveys were taken using Reflex Multi-Shot instruments at regular intervals. As a result of magnetic interference from the magnetite/pyrrhotite content of the formations, azimuth is not considered reliable.</p> <ul style="list-style-type: none">• Pre-2020 activities utilised local grids. Activities carried out from 2020 onwards utilised the Canadian NAD83 UTM 11N grid system. Local grid coordinates have been converted to the NAD83 UTM 11N grid system, and entered into the database.• Topographic control is considered to be of high quality (sub-metre) through the DEM data obtained from the 2022 LiDAR survey.
Data spacing and distribution	<ul style="list-style-type: none">• Data spacing for reporting of Exploration Results.• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the	<ul style="list-style-type: none">• Data spacing is variable ranging from 15m where high grade mineralisation has been intersected (e.g. Arrow) to 200m for areas in between the various prospects• The 2022 program at the Arrow Zone was designed for early-stage targeting rather

Criteria	JORC Code explanation	Commentary
	<p><i>Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i></p> <ul style="list-style-type: none">• <i>Whether sample compositing has been applied.</i>	<p>than grid resource definition</p> <ul style="list-style-type: none">• Data spacing and distribution is not yet sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.• Sample compositing has not been applied
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none">• <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i>• <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i>	<ul style="list-style-type: none">• The Bugow Iron Formation is folded, and mineralisation occurs in sulphidised iron formation as steeply dipping lenses. Drilling was oriented to intersect these structures as close to perpendicular as practicable. Future programs will employ oriented core to improve structural control.
<i>Sample security</i>	<ul style="list-style-type: none">• <i>The measures taken to ensure sample security.</i>	<p>Pre-2025</p> <ul style="list-style-type: none">• Sample custody for pre-2020 samples was predominantly maintained at the site by company personnel. Contracted transportation companies are believed to have been used to transport from the site to the various laboratories.• For the 2020-2022 program, samples were bagged, sealed with cable ties, placed in rice bags with security tags, and kept under company supervision until delivery to ALS Geochemistry's laboratory, Yellowknife. Chain-of-custody procedures were maintained throughout. <p>Fin Resources Ltd (2025)</p> <ul style="list-style-type: none">• Sample custody was maintained by its geological consultant group at Yellowknife. All handling including delivery to the laboratory was supervised by the Company's geological consultant group.
<i>Audits or reviews</i>	<ul style="list-style-type: none">• <i>The results of any audits or reviews of sampling techniques and data.</i>	<ul style="list-style-type: none">• FIN has reviewed the extensive historical (pre-1991) and 2020-2024 datasets. For the 2020-2024 datasets, sampling techniques and QA/QC procedures and considered to be consistent with industry standards. An independent review will be undertaken prior to any Mineral Resource estimation.

Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"><i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i><i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i>	<ul style="list-style-type: none">The property comprises one active mineral claim (CL-1, M10076) of approximately 400 ha within Tłı̨chǫ settlement lands near Russell Lake, ~105 km NW of Yellowknife.There is 2.0% Royalty payable to Silver Range Resources Ltd on precious metal production from the property. There is the ability to purchase 75% of the Royalty by cash payments based on certain milestones being achieved.Access is by helicopter, float/ski aircraft or seasonal winter road. The claim anniversary date is 13 July 2026. An active Winter Access Road Agreement with the Tłı̨chǫ (Tlicho) Government provides secure ground access.Tenure is in good standing with no known impediments to obtaining a licence to operate in the area.
Exploration done by other parties	<ul style="list-style-type: none"><i>Acknowledgment and appraisal of exploration by other parties.</i>	<ul style="list-style-type: none">Historical work at Cabin Lake included mapping, geophysics, trenching and more than 14,000 m of diamond drilling by previous operators since the first discovery of the mineralisation in 1938.Previous operators include Andrew Yellowknife Mines (1946-1947), Cominco (1985), Freeport McMoran (1986-1987), Aber Resources (1987-1900) and Rover Metals Corp (2018-2025). All of these operators contributed greatly to the delineation and understanding of the nature of the mineralisation at Cabin Lake.Description of historical work carried out by these companies are included in the above sections.
Geology	<ul style="list-style-type: none"><i>Deposit type, geological setting and style of mineralisation.</i>	<ul style="list-style-type: none">Gold is hosted in sulphide-rich lenses within the Bugow Iron Formation of the Archean Yellowknife Supergroup. Mineralisation is structurally controlled and associated with pyrite+pyrrhotite ±arsenopyrite. <p>The deposit type is analogous to the +3.3Moz Lupin gold deposit, located some 365 km NE of Cabin Lake</p>

Criteria	JORC Code explanation	Commentary
Drill hole Information	<ul style="list-style-type: none"><i>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</i><ul style="list-style-type: none"><i>easting and northing of the drill hole collar</i><i>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</i><i>dip and azimuth of the hole</i><i>down hole length and interception depth</i><i>hole length.</i><i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i>	<ul style="list-style-type: none">A table comprising relevant drillhole collar details is appended to the main body of this report as Annexure 1.A table of intercepts is appended to the main body of this report as Annexure 1
Data aggregation methods	<ul style="list-style-type: none"><i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</i><i>Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i><i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i>	<ul style="list-style-type: none">Length-weighted averages were used for compositing; no top-cuts or metal equivalents were applied.Reported intervals use a 0.8 g/t Au cut-off and a minimum 2m downhole width. Internal dilution of subgrade material <0.5 g/t Au) may be included within reported intervals to a maximum combined consecutive length of 2m.There is no reporting of metal equivalent values.
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"><i>These relationships are particularly important in the reporting of Exploration Results.</i><i>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</i><i>If it is not known and only the down hole lengths are reported,</i>	<ul style="list-style-type: none">Mineralised zones are steeply dipping; drilling to date is not sufficiently dense or oriented to establish true widths.All reported intervals are downhole lengths, true width not knownTrue widths will be determined through future oriented-core drilling.

Criteria	JORC Code explanation	Commentary
	<p><i>there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</i></p>	
Diagrams	<ul style="list-style-type: none"><i>Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.</i>	<ul style="list-style-type: none">Maps and sections illustrating drill-hole collars and representative cross-sections are included in the body of this announcement. All figures contain appropriate scales and coordinate references.
Balanced reporting	<ul style="list-style-type: none"><i>Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.</i>	<ul style="list-style-type: none">All material results, including both significant and non-significant intercepts, are reported in the Addendum to this announcement. Where comprehensive reporting of historical assays is not practical, representative results are presented with reference to the underlying datasets.
Other substantive exploration data	<ul style="list-style-type: none"><i>Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.</i>	<ul style="list-style-type: none">The project area has been covered by airborne magnetics, ground magnetics, and induced-polarisation surveys that define high-priority targets correlated with known mineralisation.Historical trenching and limited surface geochemistry have been completed.No metallurgical testwork has been undertaken to date, and no deleterious elements are known beyond those typical of sulphide-rich BIF systems.
Further work	<ul style="list-style-type: none"><i>The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).</i><i>Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.</i>	<ul style="list-style-type: none">Most holes intersected the BIF sequence; significant gold was not encountered at depth, but mineralisation remains open along strike and down-plunge. Follow-up drilling is recommended at Beaver Zone and deeper targets.Future work will include confirmatory and step-out drilling at Arrow, and initial drilling at Andrew, Beaver, Camp and West to test high-priority geophysical and geological targets. The program will include re-sampling of available historical core, QA/QC-supported assaying at accredited laboratories, structural studies, and additional geophysical surveys to refine drill targeting.Where appropriate diagrams have been included within the main body of this report to highlight areas of possible extensions and future drilling areas